Select Page

Whole Genome Resequencing Reveals Genomic Regions Associated with Thermal Adaptation in Redband Trout

Mar 19, 2021


Adaptation to local environments involves evolution of ecologically important traits and underlying physiological processes. Here, we used low coverage whole‐genome resequencing (lcWGR) on individuals to identify genome regions involved in thermal adaptation in wild Redband Trout Oncorhynchus mykiss gairdneri, a subspecies of Rainbow Trout that inhabits ecosystems ranging from cold montane forests to high elevation deserts. This study includes allele frequency‐based analyses for selective sweeps among populations, followed by multiple association tests for specific sets of phenotypes measured under thermal stress (acute and chronic survival/mortality; high or low cardiac performance groups). Depending on the groups in each set of analyses, sequencing reads covered 43%–75% of the genome at ≥15× and each analysis included millions of SNPs across the genome. In tests for selective sweeps among populations, a total of six chromosomal regions were significant. The further association tests for specific phenotypes revealed that the region on chromosome 4 was consistently the most significant and contains the cerk gene (ceramide kinase). This study provides insight into a potential genetic mechanism of local thermal adaptation and suggests cerk may be an important candidate gene. However, further validation of this cerk gene is necessary to determine if the association with cardiac performance results in a functional role to influence thermal performance when exposed to high water temperatures and hypoxic conditions.


Zhongqi Chen and Shawn Narum


Chen, Z., and S.R. Narum. 2020. Whole genome resequencing reveals genomic regions associated with thermal adaptation in Redband Trout. Molecular Ecology 30(1):162-174. Online at



Report No.


Media Type

Journal Article