Part 1. Planning Pacific Salmon and Steelhead Reintroductions
Aimed at Long-Term Viability and Recovery

Future of Our Salmon Workshop
23 April 2014

Casey Baldwin, Sr. Research Scientist (CCT)
Planning Pacific Salmon and Steelhead Reintroductions Aimed at Long-Term Viability and Recovery

Joseph H. Anderson and George R. Pess
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA

Richard W. Carmichael
Oregon Department of Fish and Wildlife, Eastern Oregon University, 203 Badgley Hall, One University Boulevard, La Grande, Oregon 97850, USA

Michael J. Ford
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA

Thomas D. Cooney
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 1201 Northeast Lloyd Boulevard, Portland, Oregon 97232, USA

Casey M. Baldwin
Washington Department of Fish and Wildlife, 3515 State Highway 97A, Wenatchee, Washington 98801, USA

Michelle M. McClure
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA

Abstract
Local extirpations of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss, often due to dams and other stream barriers, are common throughout the western United States. Reestablishing salmonid populations in areas they historically occupied has substantial potential to assist conservation efforts, but best practices for reintroduction are not well established. In this paper, we present a framework for planning reintroductions designed to promote the recovery of salmonids listed under the Endangered Species Act. Before implementing a plan, managers should first describe the benefits, risks, and constraints of a proposed reintroduction. We define benefits as specific biological improvements towards recovery objectives. Risks are the potential negative outcomes of reintroductions that could worsen conservation status rather than improve it. Constraints are biological factors that will determine whether the reintroduction successfully establishes a self-sustaining population. We provide guidance for selecting a recolonization...
Purpose

- Framework for planning reintroductions designed to promote recovery.
Planning Concepts to Consider:

- **Benefits** – Biol. improvements towards recovery
- **Risks** – Potential negative outcomes for existing pops
- **Constraints** – Biol. factors that will challenge and ultimately determine success
Major Reintroduction Risks

- Evolutionary
- Demographic
- Ecological
- Disease
Constraints

- Barriers
- Habitat quality
- Migratory and ocean survival
- Harvest
- Species interactions
- Changing environment

- Non-Biological
 - Social
 - Legal
 - Financial
Recolonization strategies

- Natural colonization
- Transplanting (adult spawners)
- Hatchery releases (of juveniles)
Is there a reasonable likelihood of natural colonization from a nearby spawning area or population?

- Yes
 - Natural colonization

- No
 - What is the origin of the most genetically and ecologically similar source population?

How to choose a recolonization strategy
How to choose a recolonization strategy

Is there a reasonable likelihood of natural colonization from a nearby spawning area or population?

- Yes: Natural colonization
- No: What is the origin of the most genetically and ecologically similar source population?
 - None: all potential sources have unacceptable risks
 - Hatchery stock
 - Naturally spawning

No action
Is there a reasonable likelihood of natural colonization from a nearby spawning area or population?

Yes

Natural colonization

No

What is the origin of the most genetically and ecologically similar source population?

None: all potential sources have unacceptable risks

No action

Hatchery stock

Are the evolutionary and ecological risks of hatchery breeding acceptable?

No

Transplant hatchery adults

Yes

Release hatchery produced juveniles

Naturally spawning
Is there a reasonable likelihood of natural colonization from a nearby spawning area or population?

- Yes: Natural colonization
- No: What is the origin of the most genetically and ecologically similar source population?
 - None: all potential sources have unacceptable risks
 - No action
 - Hatchery stock
 - Are the evolutionary and ecological risks of hatchery breeding acceptable?
 - No
 - Transplant hatchery adults
 - Yes
 - Release hatchery produced juveniles
 - Naturally spawning
 - Can the donor group sustain take for reintroduction?
 - Yes
 - Transplant natural population
 - No
Is there a reasonable likelihood of natural colonization from a nearby spawning area or population?

- **Yes**
 - Natural colonization

- **No**
 - What is the origin of the most genetically and ecologically similar source population?
 - Naturally spawning
 - Can the donor group sustain take for reintroduction?
 - Yes
 - Transplant natural population
 - No
 - Transplant hatchery adults
 - Hatchery stock
 - Are the evolutionary and ecological risks of hatchery breeding acceptable?
 - Yes
 - Release hatchery produced juveniles
 - No
 - No action
 - None: all potential sources have unacceptable risks
 - No action
Source Population(s)

- Similar life history, morphology, and behavior traits.
- Similar genetic lineage (not out of ESU)
- If hatchery, preference to integrated programs of short duration.
Source Population(s)

- Can the source afford reductions?
- Post reintroduction meta-population dynamics
 - Effects of reintro strays on downstream populations
 - Effects of losing natural spawners (pioneers into the new habitat)
Conclusions

- Framework focused on ESA but works whenever conservation is an objective.
- Monitoring is critical for determining success.
- It is a long-term strategy.
- Does not include other objectives (e.g., harvest, nutrients).

Anderson et al. 2014
NAJFM Vol. 34
Pg. 72-93