Part 1. Planning Pacific Salmon and Steelhead Reintroductions
Aimed at Long-Term Viability and Recovery

Future of Our Salmon Workshop
19 March 2014

Casey Baldwin, Sr. Research Scientist (CCT)
Planning Pacific Salmon and Steelhead Reintroductions Aimed at Long-Term Viability and Recovery

Joseph H. Anderson*1 and George R. Pess
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA

Richard W. Carmichael
Oregon Department of Fish and Wildlife, Eastern Oregon University, 203 Badgley Hall, One University Boulevard, La Grande, Oregon 97850, USA

Michael J. Ford
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA

Thomas D. Cooney
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 1201 Northeast Lloyd Boulevard, Portland, Oregon 97232, USA

Casey M. Baldwin2
Washington Department of Fish and Wildlife, 3515 State Highway 97A, Wenatchee, Washington 98801, USA

Michelle M. McClure
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA

Abstract
Local extirpations of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss, often due to dams and other stream barriers, are common throughout the western United States. Reestablishing salmonid populations in areas they historically occupied has substantial potential to assist conservation efforts, but best practices for reintroduction are not well established. In this paper, we present a framework for planning reintroductions designed to promote the recovery of salmonids listed under the Endangered Species Act. Before implementing a plan, managers should first describe the benefits, risks, and constraints of a proposed reintroduction. We define benefits as specific biological improvements towards recovery objectives. Risks are the potential negative outcomes of reintroductions that could worsen conservation status rather than improve it. Constraints are biological factors that will determine whether the reintroduction successfully establishes a self-sustaining population. We provide guidance for selecting a recolonization target species and identifying a suitable release site.
Purpose

- Framework for planning reintroductions designed to promote recovery.
Planning Concepts to Consider:

- **Benefits** – Biol. improvements towards recovery
- **Risks** – Potential negative outcomes for existing pops
- **Constraints** – Biol. factors that will challenge and ultimately determine success
Major Reintroduction Risks

- Evolutionary
- Demographic
- Ecological
- Disease
Constraints

- Barriers
- Habitat quality
- Migratory and ocean survival
- Harvest
- Species interactions
- Changing environment
Recolonization strategies

- Natural colonization
- Transplanting (adult spawners)
- Hatchery releases (of juveniles)
Source Population(s)

- Can the source afford reductions?
- Post reintroduction meta-population dynamics
 - Effects of reintro strays on downstream populations
 - Effects of losing natural spawners (pioneers into the new habitat)
Conclusions

- Framework focused on ESA but works whenever conservation is an objective.
- Monitoring is critical for determining success.
- Long-term strategy