Fish Passage Issues at Hells Canyon Dam

Steve R. Brink, Senior Fisheries Biologist
FOOS Technical Workshop, March 2014, WA
Hells Canyon Complex Relicensing

- License Filed July 21, 2003 ~ 15 yrs of resource studies
- Additional Information Requests
- Declaration by FERC REA
- Federal Power Act – § 4(e), 10(a) &10(j), §18
- NEPA - Environmental Impact Statements
- Clean Water Act § 401 certification
- Endangered Species Act - § 7 consultation – Biological Opinion(s)
- New license – Implementation of Mitigation Programs

USFWS - §18 Fishway Prescription
Hells Canyon Complex

- 100m (330 ft) high dam, reservoir ~ 40 km long
- 64m (209 ft) high dam, reservoir ~ 20 km long
- 120m (395 ft) high dam, reservoir ~ 90 km long
Section § 18 Fishway Prescription
U.S. Fish and Wildlife Service

- § 18 included passage facilities at:
 - HC Dam and Reservoir
 - Oxbow Dam and Reservoir
 - Brownlee Dam and Reservoir
 - not included

- Weirs targeted to collect downstream migrating bull trout in the fall

- Indian Creek, Oxbow Dam, Wildhorse facilities constructed once bull trout population-based triggers met

1. Hells Canyon Trap
2. Pine Creek Weir
3. Indian Creek Weir
4. Oxbow Dam Trap
5. Wildhorse Weir
Idaho Power prepare a bull trout passage plan that would include:

- final design plans for the Hells Canyon trap modifications;
- final engineering design plans for the Pine Creek monitoring weir and trap fishway, and construction of the weir and trap fishway within 2 years of license issuance;
- specific protocols for the period of operation, location of release point, and handling of all life-stages of bull trout and other fish captured at these two facilities;
- provisions for transport of bull trout between Pine Creek and Hells Canyon dam;
- an assessment of monitoring necessary to evaluate the potential and risk of introducing deleterious pathogens; and
- a post-construction monitoring plan.
Existing Trap at HC Dam

- Constructed in Fall 1983
- Operational in Spring 1984
- Historically operated 24 hours/day for multiple days
- Daylight only operation in 1994
 - increased adult returns
 - ESA concerns
- Currently operated ~3 days/week until hatchery/fishery goals met
FERC AIR directed IPC to design trap modifications as follows:

- Allow onsite sorting and holding of adult resident salmonids and anadromous fish
- Provide safe & efficient means of returning wild fish to the river after sorting
- Ability to scan fish for PIT and coded-wire tags
- Provide collection of native resident salmonids
Hells Canyon Trap Modifications
Concept
Hells Canyon Trap Modifications
Concept

FERC AIR concept report (2005)
Concept updated (2011)

- Two fishway entrances (low/high flow)
- Extend existing fish ladder
- Raised exterior wall for flood protection
- Fish release system in lower ladder
- Pre-lock holding area
- Fish Lock to elevated sorting/holding area
- Fish sampling/research area
- Elevated holding raceways
- Crowding channel and Truck loading
- Modified pumping station
Hells Canyon Trap Concept

- Low flow entrance 5-30 kcf
- High flow entrance 30-50 kcf

- Additional pools added to existing fish ladder
 Upper ladder leg raised for high flows

- Two false weir return systems to release fish from lower ladder

- Pre-lock holding area with additional sort and release back to river

- Fish Lock ~300 fish/cycle

- Fish sorting and sampling/Research area

- Capacity of holding raceways (5,280 sthd)

- Crowding channel and truck loading

- Pumping station
 - 105 cfs attraction flow
 - 8 submerged-style pumps

- Fish sampling/research area

- Post-sort holding raceways

- False weir return gate

- High flow entrance

- Fish ladder

- Low flow entrance

- Crowding Channel

- Fish lock

- Post-sort holding raceways

- Fish lift

- Pumping station
Operation Issues

- Operations limited by flow
 - tailwater elevation
 - retaining wall
- Debris issues during spill

1997 Flood

50,000 cfs
Trap Operation

- Steelhead trapping
 - Late Oct – late Nov
 - April

- Spring Chinook trapping
 - May – early July
 - Dictated by flow and run timing
 - No trapping > 72° F

- Trapping stops when hatchery/fishery goals are met
 - Steelhead 750 fish (600 fall / 150 spring)
 - Spring Chinook 400 fish

- Trapping occurs at flows < 40,000 cfs
Idaho Power prepare a bull trout passage plan that would include:

- final design plans for the Hells Canyon trap modifications;
- final engineering design plans for the Pine Creek monitoring weir and trap fishway, and construction of the weir and trap fishway within 2 years of license issuance;
- specific protocols for the period of operation, location of release point, and handling of all life-stages of bull trout and other fish captured at these two facilities;
- provisions for transport of bull trout between Pine Creek and Hells Canyon dam;
- an assessment of monitoring necessary to evaluate the potential and risk of introducing deleterious pathogens; and
- a post-construction monitoring plan
Pine Creek Weir

- FERC recommended a weir designed to provide effective downstream passage over range of flows (90% in average water year or 1,500-2,000 cfs)

- FERC recommended using the larger-sized weir to evaluate the potential reintroduction of steelhead and spring Chinook into Pine Creek
Downstream Migrant Tributary Collection
Pine Creek Weir Concept

- Obermeyer Gate across Pine Cr
- Fish Ladder
- Intake Gate Structure
- Fish Screen designed for Q of 2000-2500 cfs
- Tailrace Channel w/ fish barrier
- Sorting, monitoring, & holding facility
- Truck loading/transport facility
Pine Creek Hydrology

- Moderate sized basin - 300 mi²
- Elevation ranges from 9,560 to 1700 ft
- Annual precipitation ranges from <15 - >70 in
Pine Creek Discharge

<table>
<thead>
<tr>
<th>Date</th>
<th>Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 March 2014</td>
<td>3,110*</td>
</tr>
<tr>
<td>5 June 2010</td>
<td>4,510</td>
</tr>
<tr>
<td>19 May 2008</td>
<td>4,030</td>
</tr>
<tr>
<td>1 Jan 1997</td>
<td>7,000</td>
</tr>
<tr>
<td>16 Jan 1974</td>
<td>5,430</td>
</tr>
<tr>
<td>24 Jan 1970</td>
<td>5,070</td>
</tr>
<tr>
<td>21 Feb 1968</td>
<td>4,060</td>
</tr>
</tbody>
</table>

- Rain-on-snow events common Nov-June
- Extremely flashy compared to snowmelt stream
- Flows over bankfull (1,933 cfs) are common
- 10 events over 2,000 cfs since 2010
Pine Creek Weir
Engineering Issues/Risks

- Obermeyer Gate
- Fish Ladder
- Intake Gate
- Fish Screen
- Tailrace Channel
- Fish Sorting, Monitoring, & Holding Facility
- Bedload Movement/accumulation
- Large Debris/Bedload Impact
- Maintenance Access
- Ice Operation
- Bladder structure
Pine Creek Weir
Engineering Issues/Risks

- Obermeyer Gate
- Fish Ladder
- Intake Gate
- Fish Screen
- Tailrace Channel
- Fish Sorting, Monitoring, & Holding Facility
- Sediment accumulation
- Attraction during high flows
Pine Creek Weir Engineering Issues/Risks

- Obermeyer Gate
- Fish Ladder
- Intake Gate
- Fish Screen
- Tailrace Channel
- Fish Sorting, Monitoring, & Holding Facility
- Operation through design flow range
- Debris operation
Pine Creek Weir
Engineering Issues/Risks

- Obermeyer Gate
- Fish Ladder
- Intake Gate
- Fish Screen
- Tailrace Channel
- Fish Sorting, Monitoring, & Holding Facility
- Operation through design flow range
- Sediment accumulation
- Fish Holding
- Screen Cleaning effectiveness
- Ice operations
Pine Creek Weir
Engineering Issues/Risks

- Obermeyer Gate
- Fish Ladder
- Intake Gate
- Fish Screen
- Tailrace Channel
- Fish Sorting, Monitoring, & Holding Facility
- False attraction for upstream migrants
- Flood protection
Pine Creek Weir
Engineering Issues/Risks

- Obermeyer Gate
- Fish Ladder
- Intake Gate
- Fish Screen
- Tailrace Channel
- Fish Sorting, Monitoring, & Holding Facility

- Debris accumulation
- Operation during high turbidity periods
Risk Analysis

- Flood events of 2008 and 2010 prompted risk analysis
- Significant risks associated with each major component
- Potential issues/risks would affect the long term viability of collection weir
- Limited ability to collect downstream migrants at expected migration time
- High operation/maintenance costs to repair each component
- Tributary collection of downstream migrants not feasible in Pine Creek
- Collection in mainstem Snake River more feasible
Downstream Migrants

Mainstem Snake Collection Concept

- Steel structure extending existing penstock intakes
- Extended intake structure would house extended screens
- Downstream migrants screened and directed to floating holding/sorting facility
- Fish held in raceways could be lifted with hopper, loaded on truck, released downstream
- Surface collection of fish up to 30,000 cfs (plant capacity)
- Collection during spill is unknown