GENETIC ASSESSMENT OF COLUMBIA RIVER STOCKS

BPA Project # 2008-907-00

Report covers work performed under BPA contract #(s) 56518

Report was completed under BPA contract #(s) 56518

1/1/2016 - 12/31/2016

Daniel J. Hasselman, Nathan R. Campbell, Stephanie A. Harmon, Andrew P. Matala, Stephen J. Micheletti, and Shawn R. Narum

Columbia River Inter-Tribal Fish Commission (CRITFC), Hagerman, ID, 83332

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are those of the authors and do not necessarily represent the views of BPA.

This report should be cited as follows:

Daniel J. Hasselman, Nathan R. Campbell, Andrew P. Matala, Stephen J. Micheletti, Stephanie A. Harmon, and Shawn R. Narum, GENETIC ASSESSMENT OF COLUMBIA RIVER STOCKS, 4/1/2015 - 3/31/2016 Annual Report, 2008-907-00

Table of Contents

Executive summary	
Acknowledgements	
Introduction	
Objective 1) SNP Discovery	
Objective 2) Baseline Expansion	
Objectives 3 & 4) Genetic Stock Identification	
Report Structure	
SECTION 1: SNP DISCOVERY	
Introduction	
Methods	
Results	
Discussion	
References	
SECTION 2: GENETIC BASELINE EXPANSION	
Introduction	
Project objectives and higher level harvest management questions	
Time line for completion of objectives	
Methods	
Baseline sampling and expansion	
Expansion and status of reference baselines	
Results	50
Discussion	59
References	60
SECTION 3: GENETIC STOCK IDENTIFICATION OF CH SALMON, SOCKEYE SALMON, AND STEELHEAD HAR MIXTURES IN THE MAINSTEM COLUMBIA RIVER	VEST
Introduction	
Project objectives and higher level harvest management questions	
Time line for completion of objectives	
Accuracy testing of PBT and GSI baselines	
Methods	
Tissue collection of Chinook salmon, sockeye salmon, and steelhead	
•	
Molecular data	
GSI baselines for Chinook salmon, sockeye salmon, and steelhead	
Combined application of PBT and GSI	
Results	
Accuracy testing of the PBT baseline	72

Chinook (94 SNPs)	72
Carson National Fish Hatchery & Round Butte Hatchery	78
Klickitat Hatchery and McCall Hatchery	
Lyons Ferry Hatchery and Nez Perce Tribal Hatchery	
Steelhead (95 SNPs)	
Dworshak Hatchery & Wallowa Hatchery	
Umatilla Hatchery, Winthrop Hatchery & Parkdale Facility	
Accuracy testing of the GSI baseline.	
Sockeye (87 SNPs).	
Leave-one-out analysis	
10 % Mixture analysis	
Chinook (179 SNPs)	
Leave-one-out analysis	
10% Mixture analysis	
Steelhead (180 SNPs)	
Leave-one-out analysis	
10% Mixture analysis	
Results	
Parentage based tagging assignments of Chinook salmon in harvest mixtures	
Wind River spring-run Chinook salmon sport harvest Comparison of stock composition among spring management period Chinook salmon	
fisheries	101
Comparison of percent stock composition of upriver spring Chinook salmon stocks (S	
summer-management period Chinook salmon fisheries	· ·
Stock composition of the fall-run mark-selective Chinook salmon sport fishery	
Comparison of stock composition among sockeye salmon fisheries	
Discussion.	
Management implications	
References	112
SECTION 4: CHARACTERIZATION OF CHINOOK SALMON,	
SOCKEYE SALMON, AND STEELHEAD RUN-TIMING AND	
ABUNDANCE AT BONNEVILLE DAM	115
Introduction	
Project objectives and higher level harvest management questions	
Time line for completion of objectives	
Methods	
Sample Collection	
Molecular markers	
Results	
Estimated relative abundance of Chinook salmon stocks in 2015	
Run-timing of Chinook salmon stocks in 2015	

Parentage based tagging analyses of Chinook salmon in 2015	128
Estimated relative abundance of steelhead stocks in 2015	132
Run-timing of steelhead stocks in 2015	138
Parentage based tagging analyses of steelhead in 2015	141
Estimated relative abundance and run-timing of sockeye salmon stocks in 2015	142
Discussion	144
References	146
Overall Conclusion	147

List of Figures

EXECUTIVE SUMMARY10
Figure 1: Proportion of Chinook salmon in leave-one-out tests that assigned correctly
for each reporting group lineage11
Figure 2: Sources of fishery mixtures in the lower Columbia River mainstem
Figure 3: Genetic stock composition of the Wind River sport harvest
Figure 4: Stock composition of spring management period adipose-clipped Chinook salmon
harvest mixtures
Figure 5: Stock composition of spring management period adipose-intact Chinook salmon harvest mixtures
Figure 6: Stock composition of summer management period Chinook salmon fisheries and
Bonneville Dam
Figure 7: Temporal patterns of the percent of Chinook salmon ST lineage in adipose-clipped
and adipose intact mixture samples15
Figure 8: Genetic stock composition of the lower Columbia River fall-run mark-selective
Chinook salmon sport harvest in 201516
Figure 9: Stock composition of sockeye salmon at Bonneville Dam and in the Zone 6 tribal
harvest across weekly strata17
Figure 10: Relative abundance (\pm 95% CI) of hatchery origin Chinook assigned to genetic
stock of origin that were sampled at Bonneville Dam in 2015
Figure 11: Relative abundance (\pm 95% CI) of natural origin Chinook sampled at Bonneville
Dam in 2015 assigned to genetic stock of origin
Figure 12: Relative abundance (\pm 95% CI) of hatchery origin and natural origin assigned to
genetic stock of origin that were sampled at Bonneville Dam in 201520
Figure 13: Relative abundance (± 95% CI) of sockeye salmon stocks sampled at Bonneville
Dam in 201520
SECTION 1: SNP DISCOVERY
Figure 1: Summary of Columbia River fish samples genotyped using GT-seq in calendar year
2016
SECTION 2: GENETIC BASELINE EXPANSION
Figure 1: Map displaying sampled Chinook salmon (O. tshawytscha) populations that have been
RAD-sequenced
Figure 2: Map displaying sampled anadromous steelhead (O. mykiss) populations that have been
RAD-sequenced
Figure 3: Map displaying sampled Sockeye salmon and Kokanee (<i>O. nerka</i>) populations44
Figure 4: Spring Chinook salmon and summer/fall Chinook Salmon PBT hatcheries
Figure 5: Steelhead and coho salmon PBT hatcheries
Figure 6: Principle component analysis (PCA) of Chinook salmon RAD populations
Figure 7: Chinook salmon neighbor-joining tree using RAD data
Figure 8: Principle component analysis (PCA) of steelhead RAD populations
Figure 9: Columbia Basin steelhead RAD neighbor-joining tree
Figure 10: PCoA plot showing clustering of O. nerka RAD collections used in SNP discovery.54

SECTION 3: GENETIC STOCK IDENTIFICATION OF CHINOOK	ζ
SALMON, SOCKEYE SALMON, AND STEELHEAD HARVEST	
MIXTURES IN THE MAINSTEM COLUMBIA RIVER	6

MIXTURES IN THE MAINSTEM COLUMBIA RIVER
Figure 1: Project scope showing sources of Chinook salmon, sockeye salmon,
and steelhead mixtures that were analyzed using PBT/GSI
Figure 2: Map of Chinook salmon GSI reporting groups74
Figure 3: Neighbor-joining tree of Chinook salmon baseline populations using Nei's 1972
genetic distance of 179 SNP loci75
Figure 4: Geographic distribution of collections represented in the Columbia River steelhead
GSI and PBT genetic baselines76
Figure 5: Neighbor-joining tree of steelhead baseline populations in GSI baseline v.3.3 (186
SNPs) using Nei's 1972 genetic distance
Figure 6: Proportion of Chinook salmon in leave-one-out tests that assigned correctly for each
reporting group by lineage
Figure 7: Proportion of steelhead in leave-one-out tests that assigned correctly for each reporting group by lineage
Figure 8: Genetic stock composition of the Wind River sport mark-selective harvest in 2015101
Figure 9: Stock composition of spring management period adipose-clipped Chinook salmon harvest
mixtures
Figure 10: Stock composition of spring management period adipose-intact Chinook salmon harvest
mixtures
Figure 11: Stock composition of summer management period Chinook salmon fisheries and
Bonneville Dam
Figure 12: Temporal patterns of the percent of Chinook salmon ST lineage in adipose-clipped
and adipose intact mixture samples from the lower Columbia River commercial fishery and
Bonneville Dam during the summer management period (June 16-August 31)106
Figure 13: Genetic stock composition of the lower Columbia River fall-run mark-selective Chinook
salmon sport harvest in 2015
Figure 14: Stock composition of sockeye salmon at Bonneville Dam and in the Zone 6 tribal
across weekly strata

SECTION 4: CHARACTERIZATION OF CHINOOK SALMON, SOCKEYE SALMON, AND STEELHEAD RUN-TIMING AND ABUNDANCE AT BONNEVILLE

Figure 2: Relative abundance (± 95% CI) of hatchery origin Chinook sampled at Bonneville
Dam in 2015 that assigned via PBT to 45 hatchery broodstocks of origin by age class124
Figure 3: Relative abundance (± 95% CI) of natural origin (adipose non-clipped) Chinook
sampled at Bonneville Dam in 2015 assigned to genetic stock of origin125
Figure 4: Run-timing distributions for hatchery origin Chinook sampled at Bonneville Dam in
2015 by stock of origin
Figure 5: Run-timing distributions for natural origin Chinook sampled at Bonneville Dam in
2015 by stock of origin
Figure 6: Run-timing distributions for hatchery origin Chinook assigned to PBT broodstock of
origin sampled at Bonneville Dam in 2015130
Figure 7: Relative abundance (± 95% CI) of hatchery origin steelhead assigned to genetic stock
of origin sampled at Bonneville Dam in 2015134
Figure 8: Relative abundance (± 95% CI) of hatchery origin steelhead sampled at Bonneville
Dam in 2015 that assigned via PBT to 20 hatchery broodstocks of origin
Figure 9: Relative abundance (± 95% CI) of natural origin steelhead sampled at Bonneville
Dam in 2015 assigned to genetic stock of origin
Figure 10: Run-timing distributions for hatchery origin steelhead sampled at Bonneville
Dam in 2015 and assigned to stock of origin
Figure 11: Run-timing distributions for natural origin steelhead sampled at Bonneville
Dam in 2015 and assigned to stock of origin
Figure 12: Run-timing distributions for hatchery origin steelhead assigned to PBT broodstock
of origin sampled at Bonneville Dam in 2015140
Figure 13: Relative abundance (\pm 95% CI) of sockeye salmon stocks sampled at Bonneville
Dam in 2015
Figure 14: Run-timing distributions for sockeye salmon sampled at Bonneville Dam in
2015 and assigned to stock of origin144

1	List of Tables	
2		
3		
4	EXECUTIVE SUMMARY	
5	Table 1: Relative stock composition for sockeye salmon taken in harvests and	
6	encountered at Bonneville Dam in 201516	
7		
8	SECTION 1: SNP DISCOVERY	
9	Table 1. Primer sequences, in-silico probe sequences for each allele, and correction	
10	values for each allele for each SNP locus included in the O. mykiss GT-seq primer pool3	0
11 12	SECTION 2: GENETIC BASELINE EXPANSION	
12	Table 1: Geographic distribution and locations of Chinook salmon RAD populations	1
15 14	Table 2: Geographic distribution and locations of steelhead RAD populations4	
14 15	Table 3: Geographic distribution and locations of <i>Secencead</i> (KAD populations	ΓĹ
15 16	ascertainment panel for SNP discovery	5
17	Table 4: Chinook salmon hatchery broodstock sampled for PBT baselines4	
18	Table 5: Steelhead and Coho salmon hatchery broodstock sampled for PBT baselines	
19	Table 6: List of PBT broodstock genotyping completed through 2016	
20		
21	SECTION 3: GENETIC STOCK IDENTIFICATION OF CHINOOK	
22	SALMON, SOCKEYE SALMON, AND STEELHEAD HARVEST	
23	MIXTURES IN THE MAINSTEM COLUMBIA RIVER	
24	Table 1: Characteristics of Chinook salmon harvest samples by fishery, region, life history stage	э,
25	and origin by weekly strata	
26	Table 2: Sample sizes and reporting groups of Chinook salmon baseline populations	13
27	Table 3: Chinook salmon PBT baselines throughout the Columbia River basin	
28	Table 4: Results of the accuracy testing for the Chinook salmon PBT baseline	
29	Table 5: Steelhead PBT baselines throughout the Columbia River basin	
30	Table 6: Results of the accuracy testing for the steelhead PBT baseline	
31	Table 7: Results of the leave-one-out analysis for the sockeye GSI baseline v1.0	
32	Table 8: Results of accuracy testing for the sockeye salmon GSI baseline v1.0.	
33	Table 9: Results of the leave-one-out analysis for the Chinook salmon GSI v3.1 baseline8	
34 25	Table 10: Results of the 10% mixture analysis for the Chinook salmon GSI v3.1 baseline9	
35 36	Table 11: Results of the leave-one-out analysis for the steelhead GSI v3.3 baseline. 9 Table 12: Results of the 10% mixture analysis for the steelhead GSI v3.3 baseline. 9	
30 37	Table 13: Summary information on the number and origin of PBT assigned Chinook salmon in	
38	2015 fishery mixtures	
39	Table 14: Summary of sample sizes and stock assignments for sockeye salmon fisheries by	Ū
40	weekly strata	8
41	Table 15: Comparison of stock-specific abundance and percent composition among sockeye	-
42	salmon fisheries	8
43		

45	SECTION 4: CHARACTERIZATION OF CHINOOK SALMON,
46	SOCKEYE SALMON, AND STEELHEAD RUN-TIMING AND
47	ABUNDANCE AT BONNEVILLE DAM
48	Table 1: Sample numbers by weekly strata for Chinook salmon that were DNA sampled or
49	tallied for abundance at Bonneville Dam in 2015118
50	Table 2: Sample numbers by monthly strata for steelhead that were DNA sampled or
51	tallied for abundance at Bonneville Dam in 2015119
52	Table 3: Sample numbers for genetic stock assignments of sockeye salmon that passed
53	Bonneville Dam in 2015120
54	Table 4: Stock-specific relative abundance and run-timing distribution of hatchery origin
55	Chinook salmon passing Bonneville Dam in 2015121
56	Table 5: Hatchery broodstock-specific relative abundance and run-timing distributions of
57	adipose clipped and non-clipped PBT-assigned Chinook salmon passing Bonneville Dam
58	in 2015123
59	Table 6: Relative abundance and run-timing distributions of natural origin (adipose
60	non-clipped) Chinook salmon stocks passing Bonneville Dam in 2015126
61	Table 7: Summary information about the PBT Chinook salmon hatchery broodstock
62	sources and number of assignments
63	Table 8: Stock-specific relative abundance and run-timing distribution of hatchery origin
64	(adipose clipped and non-clipped) steelhead passing Bonneville Dam in 2015133
65	Table 9: Hatchery broodstock-specific relative abundance and run-timing distributions of
66	adipose clipped and non-clipped PBT-assigned steelhead passing Bonneville Dam in 2015136
67	Table 10: Relative abundance and run-timing distributions of natural origin steelhead stocks
68	passing Bonneville Dam in 2015137
69	Table 11: Summary information for Columbia River and Snake River hatchery broodstock
70	sources for steelhead sampled at Bonneville Dam in 2015141
71	Table 12: Relative abundance and run-timing distributions of sockeye salmon stocks passing
72	Bonneville Dam in 2015143
73	

74	Executive Summary
75	·
76	This project combines four inter-related studies from the Accords Agreement that address the
77	following current and future objectives:
78	
79	Objective 1) discover and evaluate SNP markers in salmon and steelhead and other
80	anadromous fishes. In the sixth year of this project we have continued our use of GT-seq protocols for
81	SNP discovery. Our laboratory has designed SNP panels for five study species (Chinook salmon
82	[Oncorhychus tshawytscha] – 299 loci; Steelhead trout [O. mykiss] – 269 loci; Sockeye salmon [O. nerka]
83	- 93 loci; Coho salmon [O. kisutch] - 257 loci; Pacific lamprey [Entosphenus tridentata] - 308 loci) and
84	early development is ongoing for a sixth species (White Sturgeon [Acipenser transmontanus] - 117 loci).
85	An additional 476 SNP loci have been selected for expansion of the current Sockeye panel and roughly
86	75% of these should be retained after testing and optimization. The expanded panel is expected to
87	provide necessary statistical power to perform single parent assignment analyses in Sockeye salmon while
88 89	also improving genetic stock identification.
89 90	Objective 2) expand and create genetic baselines for multiple species including Chinook
90 91	salmon (<i>Oncorhynchus tshawytscha</i>), steelhead (<i>O. mykiss</i>), Sockeye salmon and kokanee
91	(O. nerka), and Coho salmon (O. kisutch). Objective two of this project describes efforts to
92 93	evaluate genetic diversity among populations that will inform managers in the areas of harvest
93 94	monitoring, and conservation monitoring. Our approach involves the collection, analysis,
94 95	interpretation and distribution of genotypic data. These data are being compiled as species-
95 96	specific reference baselines for characterizing Chinook salmon, steelhead trout, and <i>O. nerka</i>
90 97	population structure specific to the Columbia River Basin. The collaborative, inter-agency
97	application of genetic stock identification (GSI) tools continues to provide invaluable monitoring
98 99	capabilities to understand relative stock proportions in sport, commercial and tribal harvests, as
100	well as monitoring of stock specific run-timing at Bonneville Dam, Lower Granite Dam and
100	other fish weirs in the basin. Moreover, GSI is being used in concert with parentage based
101	tagging (PBT) to monitor trends in hatchery production, harvest of hatchery fish, and population
102	attributes of specific hatcheries (e.g., stray rates, survival/mortality, migratory behavior,
103	hatchery/wild interactions). We continue to expand our PBT baselines throughout the Columbia
104	River basin, and this is providing the means to assign fish from mixture samples to hatchery
105	broodstock of origin.
100	broustoek of offgin.
107	Objective 3) implement GSI programs for mainstem Chinook salmon, Sockeye salmon, and
100	stallhood fighting. In this saction, we first evaluate the accuracy of our DDT and CSI baselines.

- 109 steelhead fisheries. In this section, we first evaluate the accuracy of our PBT and GSI baselines 110 for assigning to their hatchery brood (PBT; Chinook salmon, steelhead) or reporting group of
- 111 origin (GSI; Chinook salmon, steelhead, sockeye salmon). Results of the PBT testing suggest a
- 112 high degree of accuracy for Chinook salmon (>99%) and steelhead (>99%) when the full suite of
- baselines that an individual could be assigned to are available. Results of the GSI testing also
- reveal a high degree of accuracy for assignment of Chinook (Figure 1), steelhead, and sockeye to
- 115 reporting groups.

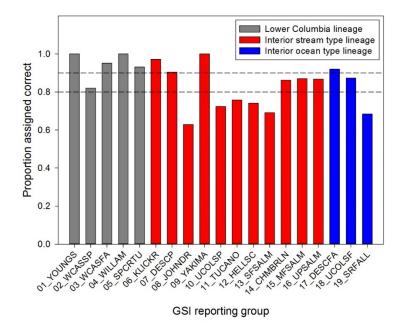
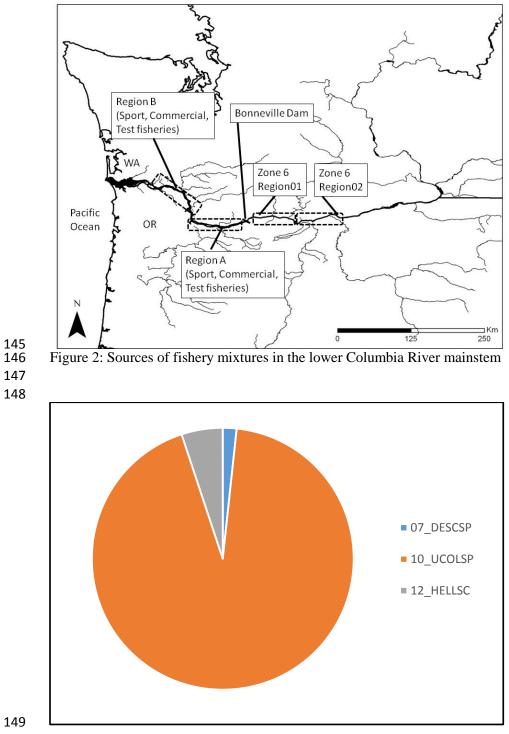
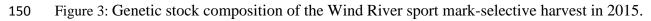


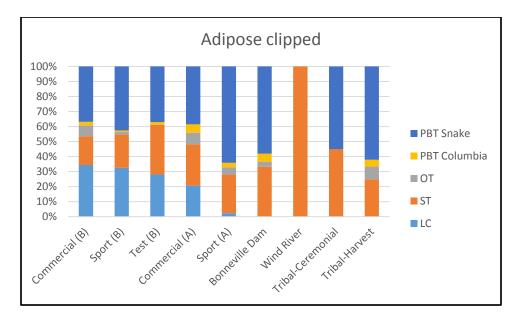
Figure 1: Proportion of Chinook salmon in leave-one-out tests that assigned correctly for each reporting group by lineage. The dashed lines indicate 80% and 90% thresholds for correct

assignment.

Upon completion of the accuracy testing, we used a combination of PBT and GSI 120 analyses to determine stock composition of Chinook salmon harvested in sport, commercial, and 121 122 tribal fisheries in the mainstem Columbia River, and use GSI to estimate stock composition of sockeye salmon harvested above and below Bonneville Dam in commercial, sport, and tribal 123 fisheries during the spring, summer, and fall management periods (Figure 1). We characterized 124 125 the stock composition of a mark-selective sport fishery from the mouth of the Wind River (above Bonneville Dam) which has recently expanded its fishing boundary into the Columbia River 126 mainstem. We observed that a large proportion (95%) of this fishery assigned to the 127 10 UCOLSP reporting groups that includes Carson Hatchery and upper Columbia River stocks 128 (Figure 3). Although we did not observe PBT assignments to the Carson Hatchery, our baseline 129 for Carson Hatchery only extends to 2012, and can only assign 3-year-old fish to that hatchery. 130 131 The 2016 Wind River fishery will provide a better opportunity to observe the proportion of fish from this harvest that can assign to the Carson Hatchery. 132


Analysis of adipose-clipped Chinook salmon from multiple fishery mixtures in the spring management period (April to June 15th) identified relatively larger proportions of individuals that assigned via PBT to Snake River hatcheries. With the exception of the Wind River sport markselective harvest, Chinook salmon from Snake River hatcheries comprised the largest component of each harvest, and accounted for 37-43% of fish harvested in Region B, and 39-64% of fish harvested in Region A from commercial, sport, and Test fisheries (Figure 4).


Analysis of adipose-intact fisheries in the spring management period revealed that PBT
 assignments to Snake River hatcheries represented 22-34% of the fish harvested; a lower fraction

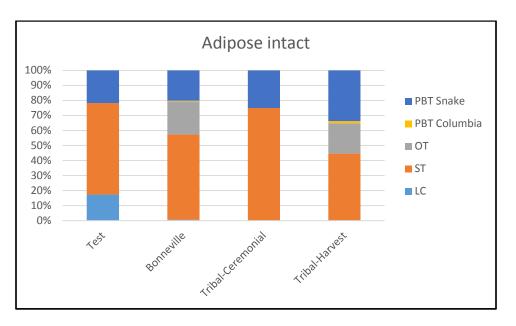

than that observed for comparable adipose-clipped fisheries, but consistent with assignments for

adipose intact fish passing Bonneville Dam (20%) (Figure 5).

144

153 Figure 4: Stock composition of spring management period adipose-clipped Chinook salmon

harvest mixtures. 'PBT Snake' and 'PBT Columbia' include assignments to all Snake River and 154


Columbia River hatcheries that are in our PBT baseline. Interior ocean type (OT), interior stream 155 type (ST), and lower Columbia lineage include GSI assignments to reporting groups within our

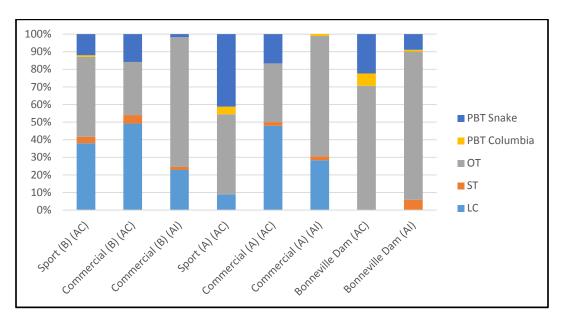
156 GSI baseline.

157

158

160

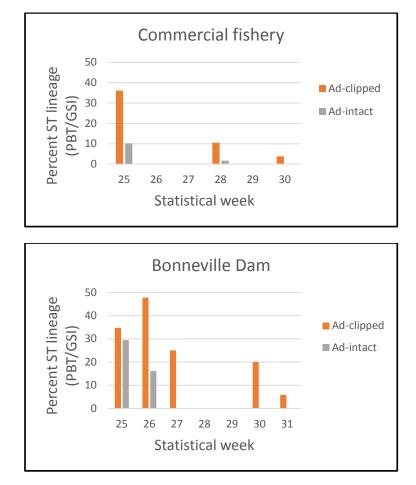
161 Figure 5: Stock composition of spring management period adipose-intact Chinook salmon


harvest mixtures. 'PBT Snake' and 'PBT Columbia' include assignments to all Snake River and 162

163 Columbia River hatcheries that are in our PBT baseline. Interior ocean type (OT), interior stream type (ST), and lower Columbia lineage include GSI assignments to reporting groups within our 164

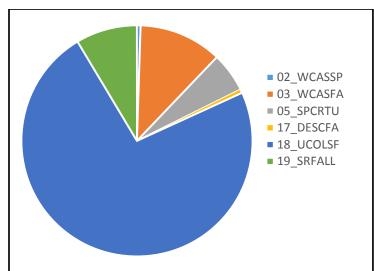
165 GSI baseline.

- Analysis of Chinook salmon fisheries in the summer management period (June 16 –
 August 1) focused on understanding the proportion of upriver spring Chinook salmon stocks
 (ST) that were being harvested. Specifically, we sought to i) estimate the stock composition for
 sport and commercial fisheries below Bonneville Dam, ii) compare the stock composition of
 adipose-clipped vs. adipose-intact commercial fisheries below Bonneville Dam, and iii)
 characterize temporal changes in stock composition across the season.
- We observed similar stock compositions for adipose-clipped Chinook salmon taken in 173 Lower Columbia River sport and commercial fisheries from Region B (Figure 6). However, 174 Chinook stocks from the OT lineage comprised a greater proportion of the sport harvest (45%) 175 than the commercial fishery (30%); a similar pattern was observed for Region A (46% vs. 33%, 176 respectively). Additionally, while Chinook salmon stocks from the LC lineage comprised a 177 slighter greater proportion of the commercial harvest (49%) in Region B than the sport fishery 178 (38%), this difference was greater in region A (48% vs. 9%, respectively). A similar proportion 179 of adipose-clipped fish from Region B sport (12%) and commercial (16%) fisheries assigned to 180 Snake River hatcheries (Figure 6). However, for Region A, a greater proportion of adipose-181 clipped fish from the sport harvest assigned to Snake River hatcheries (41%) compared to the 182 commercial harvest (17%). We observed no appreciable differences between the adipose-clipped 183 and adipose-intact commercial harvest (either within or between regions) in the relative 184 proportion of fish assigned to Columbia River hatcheries or stocks from the ST lineage (Figure 185 186 6).



189 Figure 6: Stock composition of summer management period Chinook salmon fisheries and

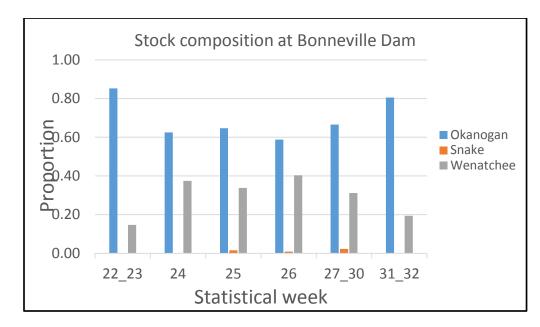
- 190 Bonneville Dam. 'AC' is adipose-clipped; 'AI' is adipose intact. 'PBT Snake' and 'PBT Columbia'
- 191 include assignments to all Snake River and Columbia River hatcheries that are in our PBT baseline.
- 192 Interior ocean type (OT), interior stream type (ST), and lower Columbia lineage include GSI assignments
- 193 to reporting groups within our GSI baseline.


195 We compared changes in the % stock composition of the stream-type lineage of adiposeclipped vs. adipose-intact Chinook salmon over the course of the summer management period in 196 the lower Columbia River commercial fishery relative to that passing Bonneville Dam. We 197 detected declines in the proportion of ST lineage Chinook salmon, for both adipose-clipped and 198 199 adipose-intact fish, in the commercial harvest and at Bonneville Dam over the summer management period (Figure 7). However, there was a modest increase in the proportion of the 200 ST lineage for adipose-clipped fish at Bonneville Dam in statistical week 26. Meaningful 201 comparisons are made challenging by the absence of data continuity over the time series owing 202 to fisheries closures and cessation of sampling at the Bonneville AFF in response to elevated 203 water temperatures. 204

205

Figure 7: Temporal patterns of the percent of Chinook salmon ST lineage in adipose-clipped and
adipose intact mixture samples from the lower Columbia River commercial fishery (top panel)
and Bonneville Dam (bottom panel) during the summer management period (June 16-August
31).

- 211 We estimated stock composition of the mark selective sport fishery in the lower
- 212 Columbia River in 2015. Major reporting groups in order of decreasing proportion were:
- 213 18_UCOLSF (73%), 03_WCASFA (12%), 19_SRFALL (9%), 05_SPCRTU (6%) (Figure 8).
- These results are broadly consistent with the 2014 fall sport harvest.
- 215


- Figure 8: Genetic stock composition of the lower Columbia River fall-run mark-selective
 Chinook salmon sport harvest in 2015.
- 219
- 220

Analysis of stock composition of sockeye salmon fisheries included those from the lower Columbia River below Bonneville Dam in sport and commercial fisheries and the Zone 6 tribal fishery. The overall composition of the three stocks of sockeye salmon in these fisheries are shown in Table 1. The proportion of each sockeye salmon stock varied over time (Figure 9).

- shown in Table 1. The proportion of each sockeye salmon stock varied over tin
- 225

Table 1: Relative stock composition for sockeye salmon taken in harvests and encountered atBonneville Dam in 2015.

	Stock proportion			
Mixture source	Wenatchee	Okanagan	Snake	
Commercial	31.27%	65.90%	2.83%	
Sport	46.30%	52.75%	0.95%	
Zone 6	43.67%	54.52%	1.81%	
Total Harvest	40.51%	56.72%	2.76%	
Bonneville Dam	34.96%	63.48%	1.55%	

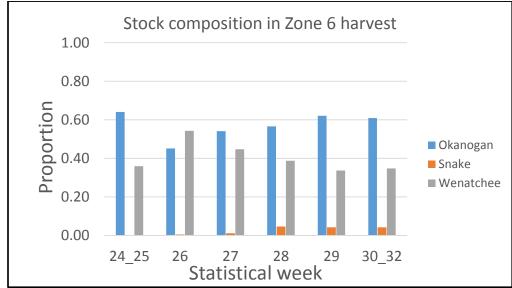
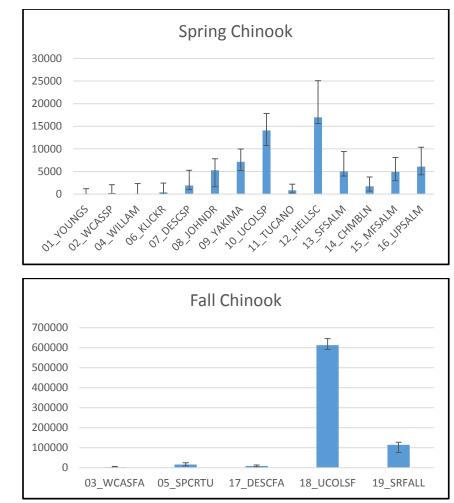


Figure 9: Stock composition of sockeye salmon at Bonneville Dam (top panel) and in the Zone 6
tribal harvest (bottom panel) across weekly strata.

Objective 4) Use PBT and GSI to estimate stock composition of fish passage at Bonneville 238 Dam (steelhead, Sockeve salmon, and Chinook salmon) 239


240 Fish were sampled as they migrated past Bonneville Dam. We sampled adult and jack Chinook and adult steelhead during the spring, summer, and fall management periods, and used a combination of 241 242 GSI and PBT to estimate run-timing distributions and relative abundance of hatchery and wild Chinook salmon and steelhead stocks in 2015. 243

There were 13 major (i.e., abundance >1000 fish) hatchery origin Chinook salmon stocks 244 represented in the total estimated relative abundance (N=557,403) of hatchery Chinook salmon 245 passing Bonneville Dam in 2015 (Figure 10). The majority of these (n=194,513) assigned to the 246 18_UCOLSF reporting group. These estimates include relative abundance for PBT-assigned fish 247 (adipose clipped and non-clipped) and adipose clipped fish that were assigned via GSI. 248

- 249 There were 14 major (i.e., abundance >1000 fish) Chinook salmon stocks represented in
- the total estimated relative abundance (N=818,032) of natural origin (i.e., adipose non-clipped 250 fish that did not assign via PBT) Chinook salmon passing Bonneville Dam in 2015 (Figure 11).
- 251
- The majority of these (n=612,750) assigned to the 18 UCOLSF reporting group. 252
 - 250000 200000 150000 100000 50000 0 I 02_WCASSP 04_WILLAM 07_DESCSP 09_YAKIMA 10_UCOLSP 11_TUCANO 14_CHMBLN L5_MFSALM 16_UPSALM SRFALL 01_YOUNGS 05 SPCRTU 06_KLICKR **30 JOHNDR** 12_HELLSC 13 SFSALM 17_DESCFA 18_UCOLSF 03_WCASFA 19

- Figure 10: Relative abundance (± 95% CI) of hatchery origin Chinook (adipose clipped and non-255
- clipped) assigned to genetic stock of origin that were sampled at Bonneville Dam in 2015. 256

258

Figure 11: Relative abundance (± 95% CI) of natural origin (adipose non-clipped) Chinook
sampled at Bonneville Dam in 2015 assigned to genetic stock of origin. Spring Chinook
reporting groups (top panel), and fall Chinook reporting groups (bottom panel) are shown.

We identified five and 11 major stocks (abundance>1000) represented in the total estimated relative abundance of hatchery origin (N=166,201) and natural origin (N=139,120) steelhead passing Bonneville Dam in 2015, respectively (Figure 12). For both hatchery origin and natural origin steelhead, the 07_MGILCS comprised the largest fraction of their abundance (n=63,072, and n=89,315, respectively).

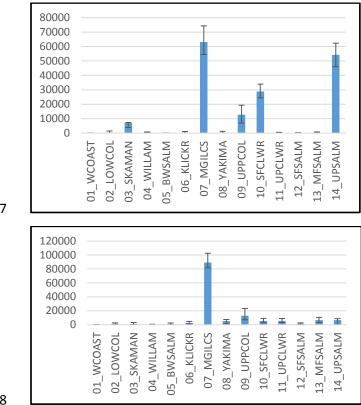


Figure 12: Relative abundance (\pm 95% CI) of hatchery origin steelhead (adipose clipped and non-clipped) (top panel), and natural origin (adipose non-clipped) steelhead (bottom panel)

assigned to genetic stock of origin that were sampled at Bonneville Dam in 2015.

272

276

The greatest proportion of sockeye salmon passing Bonneville Dam in 2015 assigned to the Okanogan stock (323,797), followed by the Wenatchee (178,325) and Snake River stock (7,919) (Figure 13).

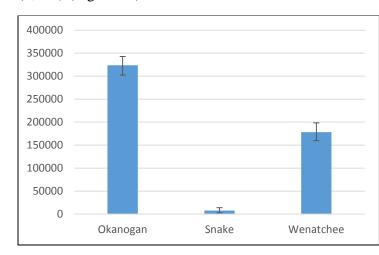


Figure 13: Relative abundance (± 95% CI) of sockeye salmon stocks sampled at Bonneville Dam
 in 2015.

- 279 While the run timing distributions of some hatchery origin and natural origin spring
- 280 Chinook salmon stocks terminated within the spring management period, several spring Chinook
- salmon stocks extended well into the summer management period. The run timing distributions
- for hatchery origin and natural origin fall Chinook salmon stocks all had median dates on or after
- 283 8/27/15. For steelhead, we identified an early Skamania summer-run, an intermediate run-timing
- category that contains most wild and hatchery steelhead stocks, and a late run-timing category
- with stocks that exhibit median dates after August 25^{th} and includes South Fork Clearwater R.
- 286 (Dworshak Hatchery), as well as wild stocks from upper Clearwater R, and SF Salmon R. Run
- timing distributions for sockeye salmon sampled at Bonneville Dam broadly overlapped in 2015.

Acknowledgements

The authors of this report thank the following individuals and organizations for providing time and expertise toward this project: The Bonneville Power Administration for providing funding for this research project and to its staff for their assistance. Tissue samples were collected and provided by Bobby Begay, Steve Boe, Chris Brun, Peter Cleary, Roger Dick Jr., Roger Dick Sr., Dani Evenson, Joe Hymer, Ken Keller, Chris Kern, James Kiona, Jacinda Mainord, Alfred McConnville, Jim Nagler, Terra Schultz, David Sohappy, Jason Vogel, John Whiteaker, Marc Whitman, Bill Young, and Joe Zendt. Collection of samples from the commercial, sport, and test fishery were coordinated with Joe Hymer. We are grateful for extensive contributions in the genetics laboratory from Janae Cole, Stephanie Harmon, Nick Hoffman, Travis Jackobson, Amanda Matala, Lori Maxwell, Megan Moore, Vanessa Morman and Jeff Stephenson. Jon Hess and Maureen Hess contributed guidance on performing parentage based tagging analyses. Substantial data and statistical guidance was contributed by Idaho Department of Fish and Game, and the following agencies made significant biological tissue and/or DNA sample contributions: Washington Department of Fish and Game, United States Fish and Wildlife Service, Abernathy Fish Technology Center, and NOAA fisheries.

Introduction

This project combines four inter-related studies from the Fish & Wildlife Program Accords that address the following current and future objectives: 1) discover and evaluate SNP markers in salmon, steelhead, and lamprey; 2) expand and create genetic baselines for multiple species (Chinook, steelhead, sockeye, and coho); 3) implement Genetic Stock Identification (GSI) sampling programs for mainstem Chinook salmon, sockeye salmon, and steelhead fisheries and 4) GSI of fish passing Bonneville Dam (salmon and steelhead). These four projects are highly related since SNP markers are needed to complete species-specific baselines, and these baselines are requisite to complete GSI. The results of these four objectives address needs for distinguishing specific stocks, determining genetic diversity, stock specific run timing, and estimating stock composition which can provide information for fisheries management.

Objective 1) SNP Discovery

One of the highest priorities in the full-scale implementation of SNPs for salmon genetics is the discovery and development of a sufficient number of markers to characterize population variability. These DNA sequence polymorphisms represent the most abundant variation in the genome of most organisms, and are spread throughout the entire genome at high density (Morin et al. 2004). Thus SNPs can be discovered through sequencing known regions of DNA and converted to high throughput assays (e.g., Campbell and Narum 2008a), and more recently SNP discovery has become even more efficient for rapid identification of thousands of SNPs using genotyping-by-sequencing technology (e.g., Hess et al. 2013). Mutation rates, mutation models and error rates for SNPs are generally well understood, providing a foundation for estimating genetic divergence between populations. SNP markers offer a more cost-effective and less errorprone alternative to previous genetic marker technology such as microsatellite markers. Over the past few years, our lab has contributed to the increasing numbers of SNP markers that are available for salmonids and lampreys, and we have reached a point where rigorous stock composition and assessment goals for timely management of fisheries and highly accurate, precise stock assignments can be achieved using one or two panels of 96 SNP markers independently of any other marker-type.

Objective 2) Baseline Expansion

Currently, genetic baselines of microsatellite markers are in place for Chinook salmon across the coastwide range (Seeb et al. 2007), steelhead (Blankenship et al. 2011), and *O. nerka* (including kokanee) in the interior Columbia River Basin. Despite large, representative sample sizes from many populations and high microsatellite allelic diversity, the resolution of specific stocks and populations in these baselines is limited in some cases. For example, Upper Columbia summer and upriver fall Chinook salmon in the Columbia River are closely related and remain impossible to distinguish even with a powerful set of 13 microsatellite markers. Several other closely related populations in the Chinook salmon baseline are similarly difficult to distinguish and thus have been pooled into a single reporting unit for GSI applications. In some cases (e.g., mainstem Columbia River Chinook fisheries) a finer level of stock discrimination is necessary to match data utilized by managers such as information provided by CWTs. Additional SNP loci will increase stock assignment reliability where greater resolution is desired. Given the difficulty and expense of inter-laboratory standardization, additional microsatellite markers are not the most efficient choice. In this regard, SNP markers are the preferred option for additional loci since they offer many beneficial characteristics that make them amenable to adding loci to existing baselines.

Objectives 3 & 4) Genetic Stock Identification

Genetic Stock Identification (GSI) methods have proven to be effective in determining the proportion of stock origin in several mixed stock applications (Narum et al. 2008b, Hess et al. 2011, Hess and Narum 2011). This study includes two GSI projects that will utilize genetic baselines: 1) GSI to provide information about harvest; and 2) GSI of fish passing Bonneville Dam.

This study includes GSI analysis of Chinook salmon and Sockeye salmon collected from commercial, recreational, and tribal fisheries in the Columbia River and GSI analysis of steelhead collected from the tribal fishery above Bonneville Dam. Subsequent years of the study may include other species such as coho salmon. Implementation of GSI technology could make monitoring individual production units in mixed stock areas possible. Tissues will be sampled annually from fisheries with existing programs in place with Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW), Yakama Nation Fisheries Program (YNFP) and Confederated Tribes of the Warm Springs of Oregon (CTWSRO). We plan to genotype representative samples from fisheries of primary interest. The GSI estimates may help fill information gaps on wild fish with a different resolution than can be estimated using methods such as CWTs.

The second application of GSI analysis in this study includes sampling unknown origin salmon and steelhead at Bonneville Dam for genetic analysis. Samples will be collected over the entire length of the run on a weekly basis, and genetic baselines will be utilized to determine the stock composition of these runs. Few studies have been able to determine the extent of overlap among life history types of salmon and steelhead, but GSI of each life history type will allow us to determine the stock composition of the different runs through Bonneville Dam which can be compared to other methods such as using fish PIT tagged as juveniles. Population genetic methods and statistical assignment models have advanced dramatically in recent years, and estimating stock composition is now possible using either Bayesian or Maximum Likelihood methods (Anderson et al. 2008). Therefore, we plan to estimate stock composition of multiple species passing Bonneville Dam and provide this information on a timely basis to fisheries managers in the form of an annual report.

Finally, we continue to utilize a new genetic technology, parentage based tagging (PBT), in combination with GSI to help augment and refine our stock identification results. PBT is an efficient approach for mass-tagging of fish. The method is carried out by first genotyping a set of potential parents which then provides the opportunity to assign a set of genotyped offspring to their true parent pair. PBT is currently being utilized on a broad scale in the Columbia River Basin to tag all Snake River Chinook salmon and steelhead hatchery broodstocks (Steele et al. 2011) and we will soon have a baseline that includes most Chinook salmon and steelhead hatcheries located above Bonneville Dam. This application has effectively tagged all Snake River hatchery fish are identified with PBT, we can provide accurate information including age of the fish and the source hatchery in which its parents were spawned.

We can now use PBT in both Chinook salmon and steelhead GSI applications to identify all Snake River hatchery-origin fish, and then we estimate stock-of-origin of all other hatchery fish that were not assigned with PBT (i.e. non-Snake River hatchery-origin) and all wild fish using GSI. In this way PBT and GSI are complimentary, and using them in combination takes full advantage of the strengths of each method, while resolving or minimizing limitations. Exogenous stock transfers by hatcheries have made hatchery-origin fish challenging to assign with GSI and represents a main limitation that is addressed with PBT. Applications of PBT have been initiated in other species such as Pacific lamprey, and are being used to monitor translocations of lamprey throughout the interior of the Columbia River.

Report Structure

This report is divided into four sections, one for each of the objectives of the study. The first section reports on SNP discovery efforts and the second section on genotyping SNP markers in Chinook salmon, steelhead, and *O. nerka* to create genetic baselines. The third section contains stock composition estimates of Chinook salmon, Sockeye salmon and steelhead sampled in mainstem fisheries in 2014. The fourth section includes analysis of run-timing distributions and estimated abundance of adult Chinook salmon, Sockeye salmon, and steelhead stocks migrating over Bonneville Dam in 2014.

Section 1: SNP Discovery

Introduction

Population genetic studies examine variation within the genomes of individuals in order to gain insights into the nature of those populations. For instance, genetic similarities among groups of individuals can indicate relatedness, recent population collapse, or barriers to migration. In the context of salmon conservation, population genetics can answer important questions directly related to fisheries management such as stock exploitation rates, effective population size, and rate of return. Other demographic information such as stock abundance estimates can also be made through analysis of samples taken from fish as they enter the Columbia River through genetic stock identification (GSI). These studies require genotype data from a suitably large and informative set of genetic markers for analysis. Likewise, the number of genotyped individuals must be suitably large to provide accurate results.

Next generation sequencing instruments can provide both a means to identify genetic variation and provide a platform for high-throughput sequencing. Methods such as restriction-site associated DNA sequencing (RAD-seq:

<u>https://www.monitoringmethods.org/Method/Details/4144</u>) can be used to identify and genotype thousands of single nucleotide polymorphisms (SNPs) within and among study populations. The most informative SNP loci are chosen for inclusion in high throughput genotyping panels. Genotyping in Thousands by sequencing (GT-seq:

https://www.monitoringresources.org/Document/Method/Details/5446) is a high throughput method that uses Illumina sequencers to rapidly genotype thousands of individual samples at hundreds of loci for less than ¼ the cost of previously used TaqMan assays (Campbell et al. 2015). Following the development of GT-seq, our laboratory has designed panels for 5 study species (Chinook salmon [*O. tshawytscha*] – 299 loci; Steelhead trout [*O. mykiss*] – 269 loci; Sockeye salmon [*O. nerka*] – 93 loci; Coho salmon [*O. kisutch*] – 257 loci; Pacific lamprey [*E. tridentata*] – 308 loci) and early development is ongoing for a 6th species (White Sturgeon [*A. transmontanus*] – 117 loci). An additional 476 SNP loci have been selected for expansion of the current Sockeye panel and roughly 75% of these should be retained after testing and optimization. The expanded panel is expected to provide necessary statistical power to perform single parent assignment analyses in Sockeye salmon while also improving genetic stock identification.

The GT-seq method allows for the addition of new loci to existing panels. Soon after new loci are identified, their sequences can be used to design primers for inclusion in the multiplex PCR mix. Additions of only a few primers to the mix require little initial testing before full scale can begin and new SNP loci can be incorporated as they are identified. Such has been the case for inclusion of 8 additional SNP loci associated with adult run timing in Steelhead (Hess et al. 2016). Addition of these loci have now made it possible to genetically differentiate winter and summer run steelhead which overlap in their return dates in several Columbia River tributaries yet are otherwise largely indistinguishable by GSI.

Methods

For new SNP loci associated with run timing in Steelhead (N = 12), the program Primer3 (Rozen and Skaletsky 2000) was used to design primers flanking the target SNP locus for inclusion in existing GT-seq panels. (GT-seq: https://www.monitoringresources.org/Document/Method/Details/5446) Parameters used for primer design are as follows (product size range: 50-80 bases, optimal annealing temperature: 60°C, primer size range: 18-24 bases, optimal GC content: 50%). The designed primers were then modified by including the Illumina sequencing primer sites. The primers were ordered from IDT (Integrated DNA technologies) at a concentration of 200µM at the 25nmole synthesis scale. Testing was done by combining primers from a set of 261 loci for O. mykiss that already worked for GT-seq with the newly designed primers. This new primer pool was then used to create a test library containing 96 samples using the GT-seq protocol (Campbell et al. 2015). The test library was "spiked" into an Illumina HiSeq lane with another sequencing library such that the test library produced about 10 million reads of data for analysis. Since the test library uses only a small percentage of the total reads on the flow cell the new library can be sequenced very cheaply. The sequencing reads were analyzed for the presence of significant numbers of heterodimers produced in multiplex PCR using custom perl scripts (https://github.com/GTseq/GTseq-Pipeline/). Primers producing large numbers of sequencing artifact reads through primer heterodimer interactions were flagged and omitted from the next primer mix. Following this step the primer mix was used for full scale genotyping using GT-seq libraries containing up to 2,500 individual samples for a HiSeq lane or up to 5,000 samples for a NextSeq flow cell.

Results

GT-seq primer pools are being used for all high throughput genotyping projects for 5 target species (Steelhead [O. mykiss] – 268 SNP loci plus sex determination marker, Chinook [*O. tshawytscha*]-298 SNP loci plus sex determination marker, Coho [*O. kisutch*]-257 SNP loci, Sockeye [*O. nerka*]-93 SNP loci, and Pacific Lamprey [*E. tridentata*]-308 SNP loci). An additional 8 loci have been added to the Steelhead panel after dropping 4 of the attempted 12 run timing markers due to sequencing artifacts (Steelhead GT-seq269 panel: Table 1). The remaining primer pools remain unchanged from last year's report but an additional 476 Sockeye SNPs from RAD sequencing data are currently under development (Paired-end data assemblies, primer design, and testing). These GT-seq panels have been used to genotype over 125,000 samples as of Dec. 16th in the 2016 calendar year (Figure 1).

SAMPLES GENOTYPED BY GT-SEQ IN 2016

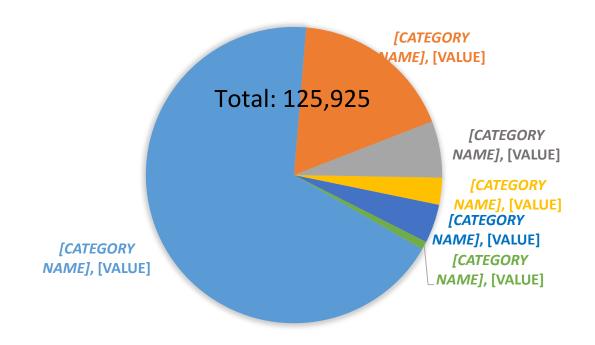


Figure 1: Summary of Columbia River fish samples genotyped using GT-seq in calendar year 2016.

Discussion

The GT-seq genotyping method has allowed for the genotyping of more samples in less time at more loci and at significantly cheaper cost than our previously used method (TaqMan genotyping assays). The total number of samples genotyped using this method is projected to approach 130,000 by the end of the year, greatly exceeding the annual output of any year preceding the use of GT-seq, as well as last year's total of just over 105,000 samples. The inclusion of more loci afforded by this method has also allowed for improved capabilities such as greater ability to discriminate between reporting groups in GSI and single parent assignments in parentage based tagging (PBT) projects. Similarly, we can now take advantage of genetic markers associated with physical and behavioral traits of our study species by including them in our high-throughput panels. An example of this is our ability to distinguish between summer and winter run steelhead by including two SNP loci found to be highly associated with run timing by Hess et al. 2016.

Expansion of our current GT-seq panel for Sockeye salmon is also projected to greatly improve research capabilities in that species. Presently, the panel contains 93 loci which are

sufficient for differentiation of Columbia River populations, but which currently lacks enough statistical power for parentage analysis in this species. Also, this expansion will be the largest panel we've attempted for GT-seq to date (576 target loci) and will give us new insights for the limitations of the technique.

In conclusion, the GT-seq method continues to produce quality genotyping data at a fraction of the cost of TaqMan genotyping assays. The technique uses only general laboratory instrumentation (Thermal cyclers, plate centrifuges, quantitative PCR instrument) for library preparation and the Illumina sequencer itself is used as a high throughput genotyping platform while maintaining its utility for other sequencing studies (whole-genome shotgun, RAD-seq, transcriptome sequencing, synthetic long read, etc.). This is a key feature of the technique since it allows the multipurpose functionality of the laboratory without investment in specialized equipment. Overall, GT-seq is a valuable tool for conservation genetic studies allowing vastly improved statistical power, higher throughput, and prediction of heritable traits at a lower cost.

References

Campbell NR, Harmon SA, Narum SR (2015) Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing. *Molecular Ecology Resources* **15**, 855-867.

Hess JE, Zendt JS, Matala AR, Narum SR (2016) Genetic basis of adult migration timing in anadromous steelhead discovered through multivariate association testing. *Proceedings of the Royal Society B.* **283**, 20153064.

Rozen S, Skaletsky H. (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, editors. *Bioinformatics Methods and Protocols*. Totowa, NJ: Humana Press p. 365-386.

Table 1: Contains the primer sequences, in-silico probe sequences for each allele, and correction values for each allele for each SNP locus included in the O. mykiss GT-seq primer pool. Each forward primer is modified with a 5 prime "small RNA" sequencing primer site

(CGACAGGTTCAGAGTTCTACAGTCCGACGATC) and each reverse primer is modified with a 5 prime standard paired-end sequencing primer site

(GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT). The additional run timing associated markers are at the end of the list and are indicated by an asterisk.

2001/	A 1 ·	12.	EWD:	REV:	A1 Broba	A2 Broba	Allele Corrections:
say:	A1:	A2:	FWD: GAGATCCTGAGGTCCCTG	AAGTGGAAATTTGGGCTCA	A1-Probe: ATCCGTCCAGGAAA	A2-Probe: TCCGTCCCGGAAAT	Corrections:
l_gshpx-357	Т	G	AAGTAT	AAGC	TG	G	0,0
	_	-	GCTGTGGTGCTCATGGGT		CAAAGCCATACGTG	AAGCCATCCGTGGC	
y_myclarp404-111	Т	G	AAA CCCGACTCTACTTCACTAC	CCAGGGCAGGGTTGTTCTC GGCCTAGGACAATAGGAC	GCC	C	0,0
y_Omyclmk438-96	А	С	TTTCCT	TGAAC	TACGCAAATTAGGT TTAAA	CGCAAATTAGGGTT AAA	0,0
.),				TGGAACGAACCTGAGAAC			-,-
9AAC.055	С	Т	GTCTCCGACGTGTGGCT	ATAAGG	ACCTCCACGCTGTCC	ACCTCCACACTGTCC	0,0
IGH1PROM1-		Т	TCAAACTGCATTTGATGG	AGGACAATTCTAAGTGACC	TAGTGTTCACTGACT	TAGTGTACACTGAC	0.0
P1	А	1	AAACAAACAT GTGCCACTGATGAGGATG	TCAAACTG GTAATAAAGCCCTTTTGTG	TCA CTTTACTGTCGACAT	TTCA TACTGTCGCCATTTT	0,0
AS00003	Т	G	AGATC	AGGAAAAACTAAT	TTTA	A	0,0
			CCCTTTAAGGAGGATTTT	GGATACAGCGTTTTGGAAT	CTTCAAATATCCATA	TCAAATATCCATAA	
4S00008	А	Т	AAATATGTGAGATAGAA	GAAACT	ATTATATC	TAATATC	0,0
IS00013	А	G	GCCTTTGTTCTCCTTGGTG GTTA	AGAAAAGTGTGGACTGAG GTTGAG	CTTCTTTTCCCTTGC TACTC	CTTTTCCCTCGCTAC TC	0,0
		0	CTTACACACAAGGGCTTC	GATGTCTCTGGGTGGTTGT	TGATTTGATGAATTA	TTGATGAATTGAAC	0,0
4S00014	Т	С	ATTCTG	CA	AACTTC	TTC	0,0
			TCAGACCCTATTTTTGGCA	GTCTAACTGATCCCACTTC	CAAGTCACACTTTTA	CAAGTCACACTTAT	
IS00015	А	Т	CAAGT ATTAAGTTCATACAAAAG	TGCAT	ATGAA	AATGAA	0,0
			TTCATCATAAAATATTTTCC	GGAGAACAAAGGGAAAGA	TAGACCTCGGTGCT		
IS00017	А	G	TTT	GAAGACA	GTAG	CCTCGGCGCTGTAG	0,0
1 000010		G	AGAGTACATGTGTGGCTG	GTCATAAATCAACACAATT	AACCACATAATTAA	CCACATAATTCATA	0.0
AS00018	Т	G	CAA CACAACTCCACAGAGACA	ATCTTCTTCACAGAA	TAATTC	ATTC	0,0
1y_cd28-130	Т	С	GTGA	GAGGACAAAACTGACCGT ATGGT	CCTGTTCATTCACCC	CTGTTCGTTCACCC	0,2.7
			CCTCGTGACTACAGAGCT	GATCTGATCGGTCGGGAG	ATGAGGGTCCCTAT	ATGAGGGTCCCTCT	
IS 00030	Т	G	ATACAAC	AGA	ACAGG	ACAGG	0,0
1000040	Т	С	GGAAGAGCTGGAGAACA	TGCAGTTGACAGAGGCTTT	CAGCTAAACTCAGC	AGCTAAACTCGGCA	0.0
4S00048	1	C	ACGT TGCGTTTTTCATCCCAATC	CTTT GGCATCAGGCTCTTCTTCC	AAAA CTTCCTTTTGAGAAT	AAA	0,0
IS00052	Т	G	ATTCAC	Т	AAT	CCTTTTGCGAATAAT	0,0
			TCAGGAAGTAAACTGAAA	CCCCAACCATGCTTGTTAT	TAGCTTGACCAAAT	CTTGACCGAATAGC	
AS00056	Т	С	ATTCCAATGTATGA	TGAAC	AGCA	A TGCCATTTGCAGACT	0,0
4S00061	Т	С	AAGTGGAGGCTGACCTGT TG	GCTGATGGCACCTGACAGT TAATT	CATTGCCATTTACAG ACTT	T	0,0
1000001		e	TCTCCAGGTGTATCTTGA	AGGGTTCACACAGGGAAG	CAGCTGAGAATAGG	AGCTGAGAAGAGGT	0,0
4S00092	Α	С	GAAGGT	ATATCAT	TTC	TC	0,0
100000 c		G	CATGAGAATGGATCAGTC	GATGAAATCTGAATGTGTT	AAAGAGGAAGAGTC	AAAGAGGAAGCGTC	0.0
4S00096	Т	G	TCCACAA GCAAATTTCACCCTTAAC	GACACTACAG GATTTGATGTGTGTGTATT	TCG GTTA[CA]AACTGAC	TCG GTTA[CA]AGCTGAC	0,0
4S00087	А	G	GTGGTTT	ACCTCCTCTA	AAAGTGTG	AAAGTGT	0,0
			AGCGGCAGTTGTGTTAAT	CTTCCTAAAGCCTGACAGT	CCACACAGCTGCCT	CACACAGCAGCCTG	
AS00119	А	Т	GAGA	CTGT	GT	Т	0,0
AS00129	С	G	GGAGATGATGAAATAAAA ATTGAGGAAAAGATGA	TGTCTGGTGAATTATCGCA AATAACCA	TTGAACAACAAGAA AAA	TTGAACAACAACAA AAA	0,0
1500129	C	0	GACCACTTCACTCATTCCT	TCCGGTTTACACACTTCAT	CGCCTCCATCTTTGT	CGCCTCCATCTCTGT	0,0
4S00133	Α	G	CCTTTT	GCA	GGT	GGT	0,0
1000100			TCGGACCACATGAGCAGT		CTAACAATAACCAA	CTAACAATAACCAC	
4S00138	Т	G	TC GGCATCATTGTTCTTGCTC	GTTCAACAGGTGCCCACAC CCTGGGAGGGTTTATATCG	AGACTG	AGACTG	0,0
AS00149	Т	G	TGTTTA	GAGTAT	GCTAAATGCACAG	GCTAAAGGCACAG	0,0
			CTAACGTCTTCCCAATGA	ACCGTGGAAATACAATTTT	TCATGACCTTGATA	ATGACCTCGATAAT	
AS00151	А	G	TATTTCACAAGATA	TTATGCCAAT	ATC	С	0,0
1500095	۸	Т	CTCCAATGGCTGTCAACA	GTGTGCTGGTCTCTTCTTTT	AGGCAACTATATAT TTTTTT	AGGCAACTATATAT	150
4S00095	А	1	ATTAAATATAAGAC AGCACTTGACTCAAACTC	ATTCTCA CTGAGACAGGAAGAACAA	CAAAAAGCATTGAT	ATTTTT AAAAGCATTGACAT	1.5,0
AS00169	А	G	ACATAAATCA	TGTTAACAAAA	ATCAAT	CAAT	0,0
			TGGAAGTAGCTACTTAAC	AACACGTGTGCTTGTTTTG	CATTAGCTTGTGTAT	ATTAGCTTGTGTGTG	
AS00173	Т	С	AGGAAATGG	TCAA	GAACT	AACT	0,0
4S00176	Т	G	GTTGGAAGTTCCGGTGGT AGAG	CTGGGTCCTGAAGGAGCTT	TTCCAGCACTGCTGT C	CCAGCCCTGCTGTC	0,0
		0		TTTTCTTTGTTCAGTCTTCT	CGAGATGATGCGTC	CGAGATGATGCATC	0,0
ny_impa1-55	С	Т	CGCTGAGAGGATTGTCAA	GTCTCTG	TACA	TACA	0,0
102705 550		G	CTCCAATCGCAAATACCC	000100101000	AGACTTACCCAGAG	ACTTACCCAGGGTG	0.0
ny_103705-558	Т	С	AGACT GGAGAAGGACAAGGACA	CGCAGGAGACGGATGCC	TGAGAG CTTTCTCTCCTACTT	AGAG CTTTCTCTCCTCCTT	0,0
ny_105075-162	Т	G	TTGGTAAT	AAAGCAGACCACACCATA CTTCTC	TCC	TCC	0,0
	-	~	GGCTTTCGGATACTGAGC	TGAACTCACTGTTGGTATG	TGGACATGATTGCA	CTGGACATGATTAC	-,-
ny_107031-704	С	Т	AACAA	GACTAGA	TAGAC	ATAGAC	0,0
107205 (0	C	C	GCCCTTGTGACAATGCAC	AGGTCTAGACAGTGTGCCA	ATACGTTACTTTTGA	ACGTTACTTTTCACC	0.0
ny_107285-69	С	G	TGTTATA GGTAAGGCCTGTCTGACT	TTTG AGAGGTCAATGGATGCCA	CCTTGT TTTGGCTATTGAAAT	TTGT TTGGCTATTGAAATT	0,0
ny 110201-359	Т	G	ATTTTGA	GTTT	TATACATT	CTACATT	0,0
•			AGTTCCGTACGGTAGCCT	CGCCCGGGTGAGAGTAATT	CAGAGTCGCCAAAA	CCAGAGTCACCAAA	
ny_CRBF1-1	С	Т	ATTCTA	G	Т	AT	0,0

O. mykiss GT-seq panel (268 loci plus sex determination marker)

OMS00114	Т	G	GGATGATGCTGTGAGTCG AGAAG	ACCTTCGCCACCCATGTTT TATT	AAACGTTTCACATG CACC	AAACGTTTCACCTG CACC	0.0
OMS00114 OMS00143	Т	c	GGAGGCACGCCCCAAA	TTTGTTAAAATAGAGCCCT TAGTGGGTTT	CCTGATCCAGAATC TAGA	CCTGATCCAGAGTC TAGA	0,0
OMS00174	A	C	TGACTAACTATGCAGCCT GAAAGG	GGGATACTCTTGTAATAAA CTGTTGGTTAGTA	CAAGAACAGG[AC]T AAATGT	CAAGAACAGG[AC]G AAATGT	0,0
	T	A	GTGTAAACAAAATGACTC TGGGATTCAG	AGAAGTGGCAATGGTGTG AAGTAT	TGGTGCAATAGAAA	CATGGTGCAATAGT	
Omy_97077-73			TCCAGACTTCTGGTTTGTT	CCAGCCCCTATATTCACAA	TA ATTAATTAACAAGC	AATA ATTAATTGACAAGC	0,0
Omy_97865-196	А	G	CCATT GCTCTGCTTCCTCGGCAA	TTAAGTGT CACAATTGGTTTTTGCACA	TC CAACGCTTACCGGT	T CAACGCTTACCAGT	0,0
Omy_97954-618	С	Т	ATA CTCATCCACACTGTACAG	AAAGTAAAGTATT CATGCCTTCGTCTCATCAA	GTGT	GTGT	0,0
Omy_128996-481	Т	G	TACAAGT CTCCATTGATTCATGCCG	TAACAC GGAGAGGTCAAACATAGC	CAAACCTCAACCAC	CAAACCGCAACCAC	0,0
Omy_aromat-280	Т	С	AACATT GCCCATTTCACTGATGCT	CTGGTA AGGAGACCACTCCAAAGA	TCTTGCAAACTCC CCTTCCTAGGCAGTC	TCTTGCGAACTCC TTCCTGGGCAGTCA	0,0
Omy_aspAT-123	Т	С	GTGA GCACAGAACACAGCCAAT	GAACT GCCTTGACTCTCCCTTCAT	AG CCTACAACTTGATCT	G CCTACAACTTGATCT	0,0
Omy_b9-164	Т	-	ATTAACA CCTCATTTACTGTAGGAC	GAC ACAACGCCAACAACTTTCT	AACGTG CAGTAGGGCGGCAA	ACGTG ACAGTAGGACGGCA	0,0
Omy_BAC-F5.284	С	Т	CATGCA	CTTG	G	AG	0,0
Omy_BAMBI2.312	G	Т	CGAGCTCATGTCCGAAAC TCAT	TTTGACAGCCTCAACTTCT AGGG	CCGAAAGTTCAACT TT	CCGAAAGTTAAACT TT	1.7,0
Omy_carban1-264	G	А	GCAAAGCCTCATCTTCAA TCATTTGT	GCAAAACACAAGTCAGGA ATCACTTA	CATTAATATTGCTAA TAACACCAAG	ATTAATATTGCTAAT AACACTAAG	0,0
			TTTGGATAAGATTGTCTTA TATGACTAAAATGTCATG	GCCAACGTCCTAGATATGG	CTAAAAGCCTATAG	CTAAAAGCCTATAA	
Omy_cd59b-112	С	Т	Т	TGTAAT GAGAAAGCCTGTAGAACC	CAAACT CGCTCACCGTGGTT	CAAACT CGCTCACCATGGTT	0,0
Omy_cin-172	С	Т	CGCATGGGACAGGTGTGT AGCTGGGCTGTATTTGTC	ATGTCT	AC CTTTAAAGACAAAG	AC TTTAAAGACAAAGC	0,0
Omy_cox2-335	Т	G	AATACTT	CAGCCCGCCACTGTCT	ACTTTAT	CTTTAT	0,0
Omy_e1-147	G	Т	GCACTGACTGTTACCAGG AAAGAG	GTACTGCAGTGTTGAGGCT ATATCA	CCATCCTGAATCTG ATTAA	CCATCCTGAATATG ATTAA	0,0
Omy_g1-103	Т	С	CTCAGCAAAAAAGAAACG TCCCTTT	AGTCGTGACAATGAGAAA CAGTGTT	CCTTTTACAATGAA GATC	CTTTTACAGTGAAG ATC	0,0
Omy_G3PD_2-371	С	А	GCAGGTAAGGTACACCAT AGAGACA	CTCCCCCTGCCTTACCAAA C	AGACATGTGGATTG GCA	CAGACATGTGTATT GGCA	0,0
Omy_gadd45-332	Т	С	AGAGAAGACTCACTGCTG TTTGC	AAATCAGTTCCCACGCTAT GCT	TTGCTCCAAAATGG	TTGCTCCGAAATGG	0,0
Omy_gdh-271	С	Т	AGGTCAGTCTACTTACAG TATAAAGCAGT	GTCATGTCAACAGAGTAAC ATAATAAATCTGC	TCACCCTGAAGTGT AGAC	TCACCCTGAAATGT AGAC	0,0
Omy_gh-475	С	Т	AAGTTACCAGAATTTTGC AAACTCAACT	CCATATTTTGAGGTGTAGC TTTACCCT	CTGAAACTCATGGT ATACA	CTGAAACTCATGAT ATACA	0,0
			CTGTGTATAAGTTTATAC	TTCAGAGAGAGAAATGGC	CCTAATAACCATGA	AATAACCATGGTAA	
Omy_GHSR-121	Т	С	AGTCAGCACAGT CACATTAAGCACTCCCAG	AGAAAGG TTGCAAAGGCCAAACAGC	TAACAGC CAGGAGTGTAAATG	CAGC ACAGGAGTGTATAT	0,0
Omy_hsp47-86	Т	А	GGA TGCGTATTATTGTTTTTCA	ATT TGAATATTTTCAAATACAT	TTT ACATTCCAATATTCA	GTTT CATTCCAATATCCA	0,0
Omy_hsp70aPro-329	А	G	AGGACTTTCAAA GGAACAACAGGATTAAGC	GCCAATTCTTTCCAA CCTAAAGGCCTAGGAAAC	ACTAT CTGAGGTCATAAAA	ACTAT CTGAGGTCATACAA	0,0
Omy_IL1b-163	Т	G	CTACTCT GATGGACAGGGTCCTCTT	TAAACTTCA CCTGTAGATAAAACATGGT	ATA CCTTTCTTGATGGTA	ATA TCCTTTCTTGATTGT	0,0
Omy_inos-97	С	А	CAC ACGCACACTTATCCTTGA	ACCAGGTC ACTGTGACAACAAATTCGG	TCC ATGGGCAGTCATTC	ATCC	0,0
Omy_LDHB-1_i2	С	Т	CAATGTT TGCTAGGTGAGTCAGAGG	TGACA GACTGGAAGGCCACCCAT	A TTTACCTGTCAACCA	TGGGCAATCATTCA	0,0
Omy_LDHB-2_e5	Т	С	TACATATT	AAG	CTTC	CCTGTCGACCACTTC	0,0
Omy_LDHB-2_i6	G	Т	TCCTCGCCAATACCATAC ATGTC	AGAGTGAAGCTAACACAC ACATTTCT	CTGTGTTTTGCTTCC CCA	CTGTGTTTTTGATTCC CCA	0,0
Omy_lpl-220	С	G	TGACAATCACTGAGCAAC TGAACTC	GTCCAGTCTTGCTTCAACT CATTCT	AGTTACTCAGTGAC AGTCA	AGTTACTCAGTCAC AGTCA	0,0
Omy_mapK3-103	А	Т	GAAGTCATTACTGGTCAG TGGTCAA	GCACAAAACATGAGGAAA GTTGAGA	AATTATTAAGCCTAT TTTTTT	ATTATTAAGCCTAAT TTTTT	0,0
Omy_mcsf-268	Т	С	CCAGCATTCGTTCCCATTT CC	CTTTTAATGTAGATTATAT TCTTCTGTAGCCACTATGG	AAATAATAGATAAA [CT]CCT	AAATAACAGATAAA [CT]CCT	0,0
Omy_metB-138	Т	А	TCTGTCCCTGACGCTATA AAAACG	GAAGTATTTCAGCTTAATT TCACTGTTGAGTT	TTCGCCAAAGAGAA AT	TTCGCCAAAGTGAA AT	0,0
Omy_myoD-178	A	С	TGGCAAAGCTGTCATTCC TTCTAAT	GGTCAAATATTTCATTTAC GATTACACTTAGGC	TTTTATGAGATATAA TTTCC	TTTTATGAGATATCA TTTCC	0,0
		т	CTCATGAAAAACGGGAGA	CAGCGGCTCTTCAGTAGTC	AACTGACAGAGTCA	CTGACAGAGACACA	
Omy_nach-200	A		GCAAAG CTTTAGAAAAGCCAAGGT	T CTGCTGCCCTCTAATGGTA	CAAC AAGGCACAGTAAAT	AC AAGGCATAGTAAAT	0,0
Omy_nxt2-273	С	Т	ATATTTTAACATACTTCT CTGGATGTGTAGTATCGG	AGATAG CACTGGGCACCTCTGATCT	GT[CT]GAT CTGTAGTAGTCCCC	GT[CT]GAT CTGTAGTAGTCCGC	0,0
Omy_OmyP9-180	С	G	TGGAAAA CAAACAACCACAGTAGTC	C GCTTTTCACCCTTTTGTAA	ATTGT AAGACAAAGGTGTA	ATTGT AAGACAAAGGTATA	0,0
Omy_pad-196	С	Т	CTCCAAT CTGTTTTAGATTAGAATGT	ATTAAGCCAAA CTGAACATAGGCTTTCATT	ATACC AAATAGCGGAGAAA	ATACC AAAATAGCAGAGAA	0,0
Omy_ppie-232	С	Т	TTTTGGTCAGGT GTCATACAGAACTGTTTT	TCAGACAT ACCTTGAATTGGTTCCTAA	AT CAGTTTGAAGAATA	AAT CAGTTTGAAGACTA	0,0
Omy_ca050-64	Т	G	GTTGTGTCAA	TGCTATTGT	TACTC CTAGCCAATGCGTC	TACTC ATCTAGCCAATGTG	0,0
Omy_sast-264	G	А	GAAGTAGGGTTTGTTGAC CATGTGA	TGGATTCCATTTTAGGCTG TAATACATCTT CTACACCCATCACTACCTAA	TAA	TCTAA	0,0
Omy_SECC22b-88	Т	С	GGATCCCTCCTTTTAACAC AAGACT	CTACAGGATGACTACCTAA TTGCTAATAAAACA	CTGTCTGTCCATATA TC	CTGTCTGTCCGTATA TC	0,0
Omy_sSOD-1	Т	G	GCCGGACCCCACTTCAA	CAGACTAACCGAACAGCA TCAGTGG	CCACAACAAGACCC	CCACAACCAGACCC	0,0
Omy_star-206	А	G	CGTGTGCCAGCCCTTCT	GACCACTGAGATCATTGCT GTGA	TCTTTGGCACTATAT CT	TTTGGCACCATATCT	0,0
Omy_sys1-188	С	А	CTTAAATGGTGCTGGTTG CTGTATT	AGTGATATCTTAGTGGGTC GAGGAAA	AAACATGTACGACC TGTC	TGTAAACATGTACT ACCTGTC	0,0

				GGCCCAAACACTTCCTTCC	CGTGATTAGGTTCTT	CGTGATTAGATTCTT	
Omy_tlr3-377	С	Т	GTCGCTCCGGGTGCTT GAGCGTATCTGGTATGGT	T CTCCAGCAGCTTTAGAGAG	C CAGTAATATTTCAGT	C CAGTAATATTTCTGT	0,0
Omy_tlr5-205	Т	А	AACAACA AGCCCGAACTATCCTAAA	TTTACA AAATCAATAGCTCAGAGA	GCCCG CAGTGTTTTGTTTTT	GCCCG AGTGTTTTGTTTTTG	0,0
Omy_hsf1b-241	А	-	GCATTTT CCCGCTATATTATTTGATC	ATAATGAACACCA ATTTAAATCCATTTCTAAA	TGTCATT ACTTGGGAATACCC	TCATT CTTGGGAATAACCC	0,0
Omy_u07-79-166	G	Т	ACCCTTGA	AATAAGCAAACCTAACCA	CAGCC	AGCC	0,0
Omy_u09-52.284	Т	G	TTTGTGTGTGTATTGTTGTGA CTTG	TGATGTTATTGCAGGTCTA GCGAAA	ACTGCATTGTTGTAG CTAG	CTGCATTGTTGTCGC TAG	0,0
Omy_hus1-52	G	А	CTTGCCGGAGGGTAGCT	CCACAACTTCTCAAATGAA TGGAATGT	CCCATCCCTCCTCCT GG	CCCATCCCTTCTCCT GG	0,1
Omy_u09-56.119	Т	С	CCAAGGTGGACCCACCAG	GCTGAGTTTATAGGTCAGT CATTATACATATTGA	AGTGAGCTGAAACA GAGCA	TGAGCTGAAGCAGA GCA	0,0
Omy_nips-299	Т	-	GACAGGATAGGAACGGTT TCTCAAT	ATCAGAAGTTTAATTCAAT ATGTACACGATCCT	CTGGATTTCACATGT AATAC	CTGGATTTCACGTA ATAC	0,0
Omy_UT16_2-173	С	Т	GACTCATTATCACCTTAGT TGTAGCTTCA	AGCTACTTGCTGTATCACA TGTTTGT	ACAGTCAACAAGGG ACTTAA	ACAGTCAATAAGGG ACTTAA	0,0
Omy_vamp5-303	А	-	CTGCTTCCCAATTCAGTAT CGTCTT	AGGCTGAAGCATTTCTGAG TATGAA	TGGCCGTAGTAGTT GGTCA	TGGCCGTAGTTGGT CA	0,0
Omy_zg57-91	С	А	CACTCATACACTCACTCA CAAAGGA	AGCAGATAAGCCTTGTGA GTGAATCTT	CACAGACTGCACAG CC	CCACAGACTTCACA GCC	0,0
5- 6			AAGAATTGAGGGATAAAA ACAAAATAATATATAAAC	CAAACCTACATTCATTAAA	CACCCACTTTCAAA	ACCCACTCTCAAAA	
Omy_ndk-152	А	G	ATGA ACTGTTACCACTCTCTCAT	GTCCAGTTTTGT GGGTCCAGGAGGTTTTTAA	AC CACCAACCACTGGT	C CCAACCGCTGGTGA	0,0
M09AAD.076	Т	С	CAACCT TCCCATGGCCCTTACTCTA	ACAACAT TTGAGGTGTATGTTGAAAA	GAA AACAAAGTGAAAGT	A CAAAGTGAAAGTGT	0,0
M09AAJ.163	G	А	TCAA	GTAAACTT	GTCCTTA	CTTTA AGGTTGTTTTACACA	0,0
M09AAE.082	Т	G	CTATGTGCAGTGCCCTTCT CA	GGCTTACAAGTATGCATGA CTAGCT	AGGTTGTTTTACAA ATTTAA	TTTAA	0,0
OMS00002	А	С	TTTGATTTGATTTGTATCT GCTTCTT	CCAACATGCCTCACACAAA A	TGTTTTGCAGCGCTC	TGTTTGGCAGCGCT	0,0
OMS00006	Т	С	TCCACGTAGGACATAGTT TGAGCTA	TGTGGTGTCATGTTTGCCC TAC	CACTTACAAATACA AAATT	CTTACAAATGCAAA ATT	0,0
OMS00024	Т	G	CACATACAACCATCACCC TTCCTAA	AGCATTGAGCGAAATTACC AAGAGT	AA[AC]CCCAAATTT TAC	AA[CA]CCCAATTTT AC	0,0
OMS00039	А	G	GTCAGTACTGTGTGTGTCT GTGT	CCATCTACATTGTCAGCAG TGTGA	GTACGTGTCTCTGAC C	GTGCGTGTCTCTGAC C	0,0
OMS00053	Т	С	GGAGCCAGGTCAAGGTGA TC	GGATGTCTGGTGTGGCTGT AAA	ATTTATATGTATCAA TCA	ATTTATACGTATCAA TCA	0,0
OMS00057	Т	G	GAGAAAGGGAGCATGAG ACAGAG	GTTGGGCTCCGGTACGAT	CTCCACAGAACCTT G	CTCCACAGCACCTT G	0,0
OMS00058	А	G	GTGACATTTGGAGCCACT GC	GCTAGGAGACAGAGGGTG AAAG	CAACACTTTGTACCC CTC	CACTTTGCACCCCTC	0,0
OMS00062	Т	С	ACCCTGGGAAGGCTACTG TAC	TGAACAGAGATCTGGAGA GTTGGAT	TTGACCAGCAGATG GTGTA	ACCAGCAGGTGGTG TA	0,0
0111500002	1	e	GTGGATATGTAGTTCGAT	TTTACAACAATCTTCTTTT AATAAAAAATATAGCCACTT	CAGGCAACATTTTA	CAGGCAACATTTTA	0,0
OMS00064	Т	G	GGAACAGT	AT	TATAACTA	TCTAACTA	0,0
OMS00068	А	G	GCACTAACTGGACAACAT TTTTAAGAATGA	GGCAGTTGAGCATTTTGGG ATATT	AATATGCCTCCTTCG TCTC	TATGCCTCCTCCGTC TC	0,0
OMS00070	Т	С	CGTTCCTGCGGGACAGT	GTTTCTCTCACGTCCACAG ATCT	CAAAATACGGAAAT GCAG	AAATACGGGAATGC AG	0,0
OMS00071	А	G	CCGGAGTGACCTCACATT TGG	GCATCGTACAGTTCACCTA CCT	CTTGTTTGAGCTTTT TCT	TTGTTTGAGCCTTTT CT	0,0
OMS00072	А	G	GTGGGAGAGCTCGTCTAT GG	ACAACAGGTCATTGGATGT GATCAG	TAGAAGGTCCATGT ATCTC	AAGGTCCATGCATC TC	0,0
OMS00074	Т	G	CCTGTTTATTCATCTAAAC CAGTTCTTTAAAAT	AACTTAATTTAGCAAACAA ATGTCTGAACAGAA	TGAAACAAAACAAA TGTTCC	AAACAAAACACATG TTCC	0,0
OMS00077	С	G	AATACCATCTTGAGCTCA TTAGTAATTATTCAA	CCAGACTTTACACACTCTT GACTGA	TTCCGGTGGTGAAG TT	CCGGTGCTGAAGTT	0,0
OMS00078	Т	С	GAGGGAAGCAGCCATAA ACAGAATA	GTCTCACTATGGTCCATAT CTGTGTAGA	TTCACATGCATAAG AGTG	TCACATGCATGAGA GTG	0,0
OMS00079	Т	С	GTAACATTATGAATCTAT CAGTTTCCCTAGCT	ACCTGCAACGTTAGAGCTG TTTATT	CTACTTTTCACAGTA ACACAG	CTACTTTTCACAGTG ACACAG	0,0
OMS00111	Т	С	CATGCGGACCTGCATAGC T	GCTTAGCCATTGACAGAGC ATATCA	CAACCAGACTACCA TTC	AACCAGACTGCCAT TC	0,0
OMS00089	A	G	GCACCATTTGAATAAAAA ATCTGCTTTGT	GCAACCCAATTCAATATTA AGCACATGAT	ATGAATCCCAAATA AGAAC	AATCCCAAACAAGA AC	0,0
OMS00090	T	с	AGGGCACAACACCACTCT AAATT	TCGAAAAGCAACATCTGTC TCAGT	ACAACCACACAAGA TT	AACCACGCAAGATT	0,0
		G	GCGTGTCGTGGGTCAGTT	GTGCAATCCAACCTATTAG	CTCTAGTAGCCTTAT	CTAGTAGCCTTACA GAAAG	
OMS00101	A		AAATA ACATTTGAAGTCAGTATG	TAGATATGCT GAACCTCACCACAGTACTA	AGAAAG CTGCTATTCAAATTG	CTGCTATTCACATTG	0,0
OMS00105	Т	G	GGTGTTGAG CGTGTAGCATTCTTGAGG	AATGCA TTTCCAACAGATGCCAGAA	CT TCTGATGGAAACTTT	СТ	0,0
OMS00106	Т	G	AAGCTT GATGTTGGCTGGAGGTGT	TCCT TGGGAACACTTTGCCTACC	C ACAGGGCTTCTGAT	TGATGGCAACTTTC AGGGCTTCAGATTG	0,0
OMS00154	А	Т	AGT TGGCAGCAAAAGGGATGC	C TCCTGAGCAACCAGTCAAC	TGA CCGGTTTCAAGTTTA	A CGGTTTCAAGTATA	0,0
OMS00112	А	Т	A GCTTATTTAGAGTGCATG	ATT TGGAACCAATGGGACAGT	CTTGT GCGGGGGTGTGC[AG]	CTTGT GCGGGGGGGTGC[AG]	0,0
OMS00118	Т	G	CCAGATG GGCAGAAGAGGAGAGAG	CCTA CCTCAAATACCTCTGACAT	CATT C[GA]CCCACTAAAA	CATT C[GA]CCCACCAAAA	0,0
OMS00120	А	G	ATATGATTG GGAAGGAGGTCCAGTGTG	TGAAGGTT AAAATATGCAACACCACT	C ACAGCGTGATAAAT	C	0,0
OMS00121	Т	С	AGT GTTTATGACTCCATTGCCG	AAAACTGGAAAA ACGCGACCTGCAATTCATC	T CAGCAGTCCTCTGT	CAGCGTGGTAAATT AGCAGTCCTCAGTG	0,0
OMS00132	А	Т	AAATGATT TTGCGATATGGGACTGTA	ACTACCTCCAGTTAAAATA	GTGG ATCACTAGTTCAAA	TGG ATCACTAGTTCAGA	0,0
OMS00175	Т	С	TACATTTATTCC	GTGTGGGAAA	TACAA	TACAA	0,0
OMS00179	А	С	GTCATAACAAAATCAGGG	TGGGAGATTTGGGCTGCTT	TGCCTCTTCTCTTTT	CCTCTTCTCTTGTCT	0,0

			CTTTCCAA	ТААА	CTCAT	CAT	
			enteena	CACATTGCTGTCGTTTAGT	CTAAAAGTGCATTA	CTAAAAGTGCCTTA	
OMS00180	Т	G	GCGCCGAATGGCATTAGG TGGCTCTGGACCTGTTGA	TTGACT CGTCACAGCTATTTTAGGC	AGCC TGTAGTCTTTCAGAG	AGCC TAGTCTTTCAGAGG	0,0
Omy_101832-195	А	С	GA ACAAAACACAGTGGAATT	GTAGT GGAAGTTAAATTTCGCTTC	TAGTATG CTTGATTTGCAGCTT	AGTATG TGATTTGCAGCATGT	0,0
Omy_101993-189	А	Т	ACAATTAACGTT	GTCAGAA	GTCAA	CAA	0,0
Omy_102505-102	А	G	CTGCAAACTGACATGGTA GCAAAA	TGCTTGCTTTTTAAAAACA ATCTCCCA	AACAGGATGTTTTT GC	CAGGATGCTTTTGC	0,0
Omy_104519-624	Т	С	CGTGTGAGTTTGCGGTAA AGAC	TGACGAGTCCGTCTTATCA TCCT	CAGCAGGATACATC CGACT	AGCAGGATACGTCC GACT	0,0
Omy_105105-448	С	Т	CAATTTGCAAGCAGGGAA AGGTTAT	GTGATGGGCTGCAATTGCT T	AAGGAGAATGCATA ATC	TGAAAGGAGAATAC ATAATC	0,0
Omy_105385-406	Т	С	ACCTACCCTCACCTGAAC TTCA	CGCTCTTCTGGGCGTATCG	CTTGGAACCATTGCT AC	TTGGAACCGTTGCT AC	0,0
Omy_105714-265	С	Т	CCACTCAGTGCAAGCATG GA	GCTTTCAATCCTTGGCTCC AATATC	CTGTTGTTTGAGGTT CAG	TGTTGTTTGAGATTC AG	0,0
Omy_107806-34	С	Т	TCTTTGTCCATGCACATTG ATATT	AGCACATTTAGTTAGCAGT GATGGA	ATTGGATGTCAGTG TCATT	ATTGGATGTCAATG TCATT	0,0
Omy_108007-193	A	G	GTGAATACCACCCAGGCT TGT	GTCCCTTCCCCAGTTTCAC TTAATT	ATGTTTTCTCCCTAC TTAAC	TTTTCTCCCCACTTA AC	0,0
Omy_109243-222	A	с	ATGTGCACCTCTTAAATT GTAAGTAAAATGT	ACCCTATATTCAGTGGCAA GATTGC	TGTTCATTAAATTGA CTTTTT	TTCATTAAATGGACT TTTT	0,0
	Т	с	GGGAGGAATTGGAATGAC	CGGTGTCATTATGGTTGTC			0,0
Omy_109894-185			AGATTAAC GTGCAAGGGACCTAGCTA	ATTGTG TCTGAACTGACACTGAAGA	CTCCCTGATCCCCC ACGTTAGCTTTTAAT	CTCCCTGGTCCCCC AACGTTAGCTTTTCA	
Omy_110064-419	Т	G	ATCC CACGCGCAATCTCTCGTTT	ACAAAGAA TCTTTAGGCAACAAGCGTG	TTC AGCAAGCGCACT[A	TTTC AGCAAGTGCACT[AG	0,0
Omy_111383-51	С	Т	TAC CATAGTACATTTACAGAT	TCA	G]GGT]GGT	0,0
Omy_113490-159	С	Т	AATGTTTTAAAGTGCATG T	CGAGATACCAAAATGCCA CAGTTACAT	CATCTGTTTTGGTTT AGC	CATCTGTTTTAGTTT AGC	0,0
Omy_114315-438	Т	G	CCTCACCGATCTAGTCAA CTTCATC	AGGAGGCTGAGGGAGATT CTAG	TTATGGGCTTAAGG GTC	TTATGGGCTTACGG GTC	0,0
Omy_114587-480	Т	G	CAGATTACGTTATTACGTT TGGGAAATTTTTAAGT	GTGAAAGAGTGGGAAATA TAATTATAAGGTCAGA	CCTGTCCAAAATTGT	CCTGTCCACAATTGT	0,0
Omy_129870-756	С	Т	TCGTTATTTTGCCTCGCGG TA	TCCCATGAAGATGTATACA TGTTTTGTGA	ACAGGTATTTCGTG AAATG	CAGGTATTTCATGA AATG	0,0
Omy_116733-349	C	Т	GAAATGGACATGCCTACA AATTGCT	GATGTGATCAGTTTAGGCA AGGC	AGAGAATCTGATAG TATTTC	AGAGAATCTGATAA TATTTC	0,0
Omy_128923-433	Т	С	ACGTTTCTTTGGGCTGAG ACTTATT	CTATGTCCTTGGCAGAAGT CTACA	CTTCATTTTCATTCA CTGTTTT	CATTTTCATTCGCTG TTTT	0,0
Omy_130524-160	c	G	CGAAGGTAGCGATTGGTC GTT	TGTCTGTTCTGCTGTGTGC TT	ATGGCTTGATCCTCA	ATGGCTTCATCCTCA	0,0
	с	G	TCAGTTATGTGTAATCTCA	AACAGAAAAAGGTCTCAAT GTATTTTTTGCA	ACGTAACTTGTAGC GTTTT	ACGTAACTTGTACC GTTTT	0,0
Omy_97660-230			TTACCTCTCCAA CAGTTTGACCCGATGGTG	GATTATGGCGTGGCCTTTT	TCAGGCATGAGAGA	ATCAGGCATGTGAG	
Omy_99300-202	Т	A	TGA GGGTTAGGTGGATTTGAA	GG AGGAAGGTGATGCCTGAG	AA CTAAAATGAACTC[C	AAA CTAAAATGAACTCG	0,0
Omy_aldB-165	С	G	GGAGTAA GGTAATGCCACATGCGGT	AGA GGCGAAATCTGAAAATGT	T]CCACCA CTCTCATTGGTATAG	CCACCA CTCATTGGTATATTA	0,0
Omy_anp-17	С	А	AAATT CTGCACAACTTGTTTCCTG	GCTGTTA ACCAAGTGTCCCTGTAAGC	TAACC	ACC	0,0
Omy_arp-630	G	А	CTATT	C GATATGAAAATATCTGAA	CCGCTCCGTCTGCT	CCGCTCTGTCTGCT	0,0
Omy_b1-266	G	Т	TCATGTGAACTTTAATTG ACTAGGAAGTCG	GAGTTATATTTGGGAAATT GAC	TCTATAAACAACAT TTTTC	TCTATAAACAAAAT TTTTC	0,0
Omy_BAC-B4-324	G	Т	CGTACTTTTCTTTTACAAA ATTAAGTGGAGGAT	GCCTAATATTGGCCTAATG TCCTTCA	CATTGCCAAATACG	TACATTGACAAATA CG	0,0
Omy_ada10-71	С	Т	TCTTTGAGCGACAAAGTC CTTGT	ACCCACACATGAACGCAA AAG	CTTCCTGCGTCCAA	CTTCCTGCATCCAA	0,0
Omy_redd1-410	С	Т	GTACTCCCACTAACATAC AGTAGACTCA	GGCACCATTGTGTTTTAGG ATGTAG	AAAATATCCTGCAA GGAAT	AATATCCTGCAAGA AAT	0,0
Omy_cd59-206	с	Т	CGATTGGCCCAGATGTTT CCAT	GCTCCGTTGCATAGGTGAC T	CAACAATCGAAGGT AAAT	CAACAATCAAAGGT AAAT	0,0
Omy_colla1-525	с	T	CCTCGGCGTGACAACCT	CCCAGAGAATGGTGCGATT AGG	CTGTTGGGAGAAGA G	TGTTGGGAAAAGAG	0,0
	т		CACTGAACTGTAAGCCAT	GCAACATGGGAATGATTC	CGGTAAGACCATTA	CGGTAAGACCATTT	
Omy_cox1-221		A	TGTGATT GCTCAAAAAGATTCTGCC	ATAAATGCA ATTACAATGAAAGTACTTG	AAA	AAA	0,0
Omy_crb-106	G	Т	AAATTCACA GATCAATTCGATCGCTCA	AGTGTTTATGCAAA CTTCTCTCGTTCTCATTGTG	TTGCAATGCGTCTTT CAAACTCTCAGGAT	TTGCAATGAGTCTTT AAACTCTCGGGATT	0,0
Omy_g12-82	Т	С	TGAAACTT GACTGTCTATAGCTATTCT	TCTCA AGAAACTACCATTGTGATT	TAG CAAGTATTTTGCGTA	AG CAAGTATTTTGCATA	0,0
Omy_gluR-79	С	Т	TCTCAAACTGT CCGGTCTACCCTATAGCT	AACAGATAGAAAATACAT AGTCAGTCAATTAGTGGTT	GGAAT AACTGTATTTGGGA	GGAAT ATAAACTGTATTTGT	0,0
Omy_hsc715-80	С	А	GTTG GGAGCAGAAAAAGGATT	TGAAATACTATCA CCAACAATTGCAGCCTCAT	AAAT	GAAAAT	0,0
Omy_hsf2-146	А	-	GGACCTT CCACCACACTCTGCAGCT	CTTAAT TTGACGGGAATCCGAGACT	ATAATCTACTA AAGAATCTCACCTG	ATAATCTAACA AAGAATCTCACTTG	0,0
Omy_IL17-185	G	А	T ACTGTCTGGCTAGAGCAC	TC ATCTTCTACCACCGCACTG	CCCAT CTGAGGCAACTTTT	CCCAT	0,0
Omy_Il-1b028	Т	С	ATTG TTTAATCTCGGTGCTGAG	TTTTAA CAAGCAAAATTGACTCCA	GT GGGAATGAAGCAAC	TGAGGCAGCTTTTGT GGGAATGAAGCTAC	0,0
Omy_Il1b-198	А	Т	CTAGTG CTTGTTCCTCGTTGTCTTC	GCCATTA CGACTGATCTCCTGCAGAC	AACTA CTATAGGAGAGAGAGG	AACTA ATAGGAGAGAAGAC	0,0
Omy_IL6-320	С	Т	CTTCTA CGCATGCACCAGTTGTAA	ATG AGTGCCACCAGCGATAAG	ACAACA CAAGTAAGTGGTTA	AACA CAAGTAAGTGGTTC	0,0
Omy_metA-161	Т	G	GAAAG	AGIGCCACCAGCGATAAG AAAA TTGCATCGGCTTTCTGAAA	TATTCT	TATTCT	0,0
Omy_NaKATPa3-50	А	С	GTTGAGCGTGTTATGGGA AAAGAG CCTTCAAACTAACGCATC	ACC	CACTCTGTTTCCTTT CTTT	TCTGTTTCCGTTCTT T	0,0
Omy_txnip-343	Т	С	CCTTCAAACTAACGCATC ATAGACATG	GGTCACTTGGCTAATCCCC TTAT	CCAACTGAAGAGAT CTG	CAACTGAAGGGATC TG	0,0

Omy alsof 241	C		AGTGTCATTGATGTCGGC CTATTTT	AAACGAATGTCCACCTCAG ATGTT	CTTCTGTATCATTTT TG	TCTTCTGTATAATTT TTG	0,0
Omy_nkef-241	С	А	GGTGTGTTACTGTAGTTGT	TGTGTAGCTAGTGATCCTG	CAGACAAGAGTACC	CAGACAAGAGTACT	
Omy_ntl-27	G	А	GTCCTT TCCTCTCTCCCATTCAATC	ATTGTCT AGACAGTAACAAAGCCTC	CCAAGAC CATTTGATGAGACA	CCAAGAC ATTTGATGAGGCAT	0,0
Omy_Ogo4-212	Т	С	ACTAATGA	AAACTTGA	TCTT	CTT	0,0
Omy_bcAKala-380rd	G	А	TTGCTCTCTTCTGGTTGCC TTA	CTTCAGGAGAAAGCGCTA CTGT	CATACCCATCCTATG TCAG	CATACTCATCCTATG TCAG	0,0
			CCCCTAGATTAAACCTGT	CTATCTATCTATCTATCTAT CTATCTATCTATCTATCTA	CCCTCTGAGAACTA		
Omy_Ots249-227	С	Т	CCAGTCT	CTTACTGAGA	С	CCTCTGAAAACTAC	0,0
Omy_oxct-85	А	Т	CGTCACTGAAACATTACT GTAACATCCA	CATCATCACGCTGTTGGTT TCTTAA	CATCGCTTATTTATG C	CATCGCTAATTTATG C	0,0
Omy_p53-262	Т	А	CCCCAACATCCAGTATAC AGTTTCA	CCCAAATTGGCAATTTTAA TAGGATTCAGA	CAAGTAGTATGGAG CTCTAT	AAGTAGTATGGTGC TCTAT	0,0
<i>y</i> _1				AGTTGCATAAGATGAATCA			
Omy_rapd-167	G	Т	CCCAACATGCTCTATTGC AGCTA	ATAAATTAAAAACACAGA T	AAACAATCCCCCCC AAA	AAACAATCCCACCC AAA	0,0
Omy_rbm4b-203	-	Т	CTGAAATTTGATGAATGG AAGCTGCA	CGTATTCAAGTCGATATAC AGTCACGAT	CACGTTATTATGAA AAGGATGT	ACGTTATTATGAAA AAGGATGT	0,0
			TAGTTGTATTAACTCTTCT	TCATTCCAGCTCCGTTCTC	TTGTGCTATTGACGC	TTGTGCTATTGACAC	
Omy_srp09-37	С	Т	TTGAGTCTAGA CAGACCTCCTCTATCTCCC	TTC ACCTCCTTTAAATTGTGCC	CACAG TTTTCCAGACTCCAG	CACAG TTTTCCAGACTCAGT	0,0
Omy_stat3-273	G	-	TATGAG	CAAGAA GGAAACTGGGAGAGATCA	TTTG TTGCAGCCCTTATTG	TTG TTGCAGCCCTTGTTG	0,0
Omy_u09-53.469	Т	С	ACAGCCTGAGCGTTTGCA	AAGGA	TG	TG	0,0
Omy_u09-54-311	С	Т	GTGGCTCCCCAGGAACAA G	AAGTTTCATGTCACATTCC AGTTACCT	TGGTAATTATTCAAC AGATCAGT	TGGTAATTATTCAAC AAATCAGT	0,0
Omy_U11_2b-154	Т	С	GGGAAGCAGAAAAACTG GAAGTT	CCCTCTGTGGGGCTTGATAT TCA	AATGATACTTTTCAG ATTGTAAC	TGATACTTTTCAGGT TGTAAC	0,0
			TTGCTTCATTTTGTCATAA	TGCATGCTCTGACAAATGT	TTGCAGATGACTAT	TGCAGATGACTGTC	
Omy_vatf-406	Т	С	CCTTGGG AGGCTGGTTTGGGATTCA	TACACT CGCCAAACACTAACTCTCT	CCACA CTTTACCTCGAAGA	CACA ACTTTACCTCTAAGA	0,0
OMY1011SNP	С	А	CTG GCGCATTTGTATGGTGAA	GTCT GCCTGGCATATGAGTGTTG	CAAT	CAAT ATGTGTTCATATGCC	0,0
OmyY1_2SEXY	Х	Y	AA	Α		AG	NA
OMS00041	G	С	GATTCTGTTCCATCCTCTT TCTGTCA	AAACATAAAAAAGGGCAT GAAGGTGTC	CCACTCTATGCCTGC CCT	CACTCTATGCGTGCC CT	0,0
OMS00103	А	Т	GAGATCACTGTAGGATTG GCTGTTT	CCTCAGAGCAGCTCACAAT GGCATC	CTCCACAGTAATTTT TTTTT	CCACAGTAATTATTT TTT	0,0
			GCCTTTCTCCCATATCACA	AAACGCATCTTACACTGTG	CTTTTACATTTTCAA	TTTACATTTTCAATT	
OMS00116	Т	А	TTCGA CACCTTTCTCTCTCTCTCCC	TTGTG AGTGTGCTACACAACCTTA	TATTCTG CACACACCCAAATG	TTCTG ACACACCCCAATGT	0,0
OMS00127	Т	G	ATCTCA ATGAAAGAACTCCCAGAC	AAAAATATATATCTATT ACATTTTAACACAGTAACA	TA ACTCTCAGAATTAA	A CACTCTCAGAATTC	0,0
OMS00128	Т	G	ACGTATTTT	CTAATACACACCA	TTATG	ATTATG	0,0
OMS00134	А	G	GAAACTGAAATGATCCCA TCGTGTT	GCTAGCATAACAGCATTGC CATAT	TCTATAGCTGCAGT ATATTA	TAGCTGCAGCATAT TA	0,0
	Т	G	ACTTTGCACCATAGGCTT GACAT	TGATAAGGATGATCAAAA	ACAAAATGTAATTT TCC	CAAAATGTCATTTTC C	0,0
OMS00153			GAGCAGAACACATAGAG	AGCTGAAGTATGTA GTAATCACCCTCTTAGCCT	TGTGTGTCCTGCTGT	TGTGTCCTGCAGTA	
OMS00156	А	Т	GAAAGACT CAGAGGAGAGGAGAGCA	GTATGG ACAACCTACTCATTGAAAC	AACA CCAGATTCAATTAA	ACA CAGATTCAATTCAA	0,0
OMS00164	Т	G	AAATACTT GAGAATCGGAGCTAATCT	TCATTGGA CACTTTATTGAGCTACATG	ATTTA CATGTGATGTTTTTT	TTTA ATGTGATGATTTTTG	0,0
Omy_1004	А	Т	TAGTTATTGTGA	GCAAATCTG	TGC	С	0,0
Omy_101554-306	Т	С	GCCTGTATTTCTCCTGTAT GTGCAT	TCAACTTTTGCAAACTTTT TTATTCTTTGTCATTT	TGCTTCTCACATTTT TA	TGCTTCTCACGTTTT TA	0,0
Omy_102867-443	Т	G	CATTTGTTTAATTTGATTT GGCACAACTTCA	CCCTAGTTCTGTAACACAA GACGTAA	TTTGGGTACATAATT TTT	TGGGTACATCATTTT T	0,0
·					CGCCACTCCGACGC		
Omy_104569-114	А	С	CCGAGGCCGACGTGATC GCCCTCTCACTCATGACA	GCGCCTCGCTCATCATCA	C CACTCCTGGGTGCA	CCACGCCGACGCC ACTCCTGCGTGCAG	0,0
Omy_107336-170	С	G	TCAAC CCTCATTCTCATTGGTGAG	GCTCCAGCCACTCGCA TGTAAGATCTGACCACATG	GAA CCTACACCTCTTTTT	AA CCTACACCTCTTTTC	0,0
Omy_109525-403	А	G	TTGTCT	AGTATAACCA	TCCACA	TCCACA	0,0
Omy_110362-585	G	А	GCAGCCAAGATGAACGAA AACTTC	CCGGCCTGGGTCTCAATG	CACCGCCCTGCCCG T	CACCGCCTTGCCCGT	0,0
Omy 110689-148	А	С	GTGTGTGGGCAGAGAACTA ACTGAT	GGTTAAGACATTAACATAA CACTGGACTCT	CAAATGAACACATT ATTTATC	ATGAACACATGATT TATC	0,0
-			CACCACACCAAGCAACTA	ACCCAACTACTGTCCCATT	CCAGTGAAATTTATT	CAGTGAAATGTATT	
Omy_111084-526	А	С	TTTCATT GGGTGAAAAGAGTGGGA	TTTCAT GTCAATTTCAAGGCACCAG	TTT AGTATAACACAGTA	TTT AGTATAACACAGTT	0,0
Omy_111666-301	Т	А	CATTTACA GTAAACCCTGCCCACATA	ACAAT CTGAGACACTGCTCCAAGG	AGACAAT AATGCGAAGACAAA	AGACAAT AATGCGAAGCCAAA	0,0
Omy_112301-202	Т	G	ATTAGGT	Т	CT	CT	0,0
Omy_112820-82	G	А	CCTTTCCTTTTGCATTTCC TCTACTTATTTATTT	AAATGAACTCACGTTGACC TCTGA	CGCCGCCAAGTTA	CGCCGCTAAGTTA	0,0
Omy_114976-223	Т	G	GACAAACAGCACTTCATT GCAGTAA	GTTGCTCCAGCACCAGGT	ACCGATGGAACAAT C	CCGATGGCACAATC	0,0
•			GTTCATTCATGTTGAAGT		CCTTGTCTCAATTTT	CTTGTCTCAATTTCT	
Omy_116938-264	А	G	GCGACAT TGATGTGTTGTTCCTCATG	CTCTGCATGCTCCCATCCT CTGTGCATTTATTCTTGTG	TCCTCT CTTTCCTCATCATAC	CCTCT TCCTCATCATACACT	0,0
Omy_117286-374	А	Т	GCTTA TGCAAACACAGAGGAAA	ATGCTAGG GGCTTATTTGTTCCGTACT	TCTATGG CAACTCCAATGAAT	ATGG AACTCCAACGAATT	0,0
Omy_117370-400	А	G	GGGATTT	TGCATT	TAA	AA	0,0
Omy_117540-259	Т	G	GGCAGGTTAACACAGTCA TCTACTATAAA	CAGCATGTTGCTTTAATCC TTCACA	TGTCACTTCAAAGTT TG	TGTCACTTCAACGTT TG	0,0
Omy_117815-81	С	Т	CTGCTTTATGCACACCAC ATTGT	GCTCTTTCTGGAGAACAAG GTACTG	CTATACGGAGACCA GC	CTATACGGAAACCA GC	0,0
			AGGCTTCACACACACATG	GACGCGCAACCTCTAGATT	CTCTTGCAGACATA	CTCTTGCAGACATTC	
Omy_118175-396	T A	A G	CA CTGCGGTGGGCTACACA	ATACTT CGCAGCTGCGGATGAG	CCCGTA CTACTGAGGCTGAG	CCGTA TACTGAGGCCGAGT	0,0 0,0
Omy_118205-116	А	U	CIOCOGIOOULIALALA	COCAUCIUCUUAIUAU	CIACIDAUUCIUAU	IACIOAUUCUAUI	0,0

			CAGCGTAGACCGTTTCCT		TCAGCTTGTCTTGCC	CAGCTTGTCCTGCCG	
Omy_118654-91	Α	G	CATTAT GGCTACAGGGACTTTACA	GCGCCGATGAGCAGCTT GCTAGCTAACATTGAAGG	GC ACTATGCCATGAAG	C ACTATGCCAAGAAG	0,0
Omy_120255-332	Α	Т	ATGGG GCCTGCAGGAGAAGGTAG	GTGGAAT GAAATGGAATGGACCCCA	TTA CACTCAACTGATAC	TTA	0,0
Omy_128693-455	Т	С	AGTTA	ATCCT	CC	CTCAGCTGATACCC	0,1.8
Omy_131460-646	С	Т	GTGAAAAGGAATGGAGG AGTACAGT	TGCTAGGACAGGAAGATC ATTTGTG	AATAAAGCAGAATT TGTTACTG	AAAGCAGAATTTAT TACTG	0,0
Omy_187760-385	А	Т	CGGCTATTCTCGCGTAAA AGCT	AAATGCAACCAGAAACGG AATGTC	TCCTTATCCAAAATT ATTGTGC	CTTATCCAAAATAA TTGTGC	0,0
Omy_96222-125	Т	С	GTAAGGAACTAATTGGCG CAACATT	CAGTTTGTCTAACACCCAG GCATAT	AACTACAACTGTAG CTAATT	CAACTGTGGCTAAT T	0,0
Omy_98683-165	А	С	GCCATTGCCAGAGAATTT GGTTAA	AACACACGCACCATCTTAA AGC	AGCCAGATACATAT TTGT	CCAGATACAGATTT GT	0,0
Omy_BAMBI4.238	Т	С	CATGATGAGGAGGACCAA GATGAG	AGGTGTGGTTCAGGGCAG	CACCGCAATCACCG	ACCGCGATCACCG	0,0
Omy_cyp17-153	С	Т	GCCCTCCAAGTTCCAAGT GAAAA	CAGGTCATTGATGAAACGT CAGAAC	ATACCTGAGTGTCA TCG	ATACCTGAGTATCA TCG	0,0
		Т	ACAGGGATGGGCAACTTT		TCATGACGAGTTCT	TGACGAGTTCAGAT	
Omy_ftzf1-217	A		GTT TCATGTATCAATTAAGGC	GGATGACCCACGTGACACT GTTAGACACAGTGACCACC	GATTT AGTAAAGCCCATTG	TT AGTAAAGCCCATTA	0,0
Omy_G3PD_2.246	С	Т	ATTGTCTTGTCT TGCATTTGATGGAAACAA	TCTTT CAAAAACAAGGACAATTC	TTGAGT AAACTGTTGAACGG	TTGAGT AAACTGTTGAACAG	0,0
Omy_GH1P1_2	С	Т	ACATATTTATAATGTGT GCATGGAACCAGTTCTCT	TAAGTGACCTC ATGGAGTGGAAAATCACA	TAGTG CATAACCCAGAATT	TAGTG CATAACCCAGGTTT	0,0
Omy_gsdf-291	Т	С	ACAAAAG GGAATCGATGACGACGAA	GCACATAT	ATTA	ATTA	0,0
Omy_hsp90BA-193	С	Т	GTGATC CGGTTGCAGAACTCTCAT	TTCCTCCATGCGTGATGCA CACGCCATGTCTTAACTTG	CCTCCGCGCCTGC CATAGACTTTTTGAC	CCTCCGCACCTGC CATAGACTTTTTGGC	0,0
Omy_MYC_2	Т	С	GTTTG	CATTA	CTTAT	CTTAT	0,0
Omy_u09-61.043	А	Т	TAGTCACATCCATAGTAA TACTTCC	TGTTCAGAAGCAGAAAAC CAATCTCT	CACTTGGTCCTTTTT CA	CTTGGTCCATTTTCA	0,0
Omy_UBA3b	А	Т	GCCACTCAATGCATGTGT TTTCTAG	CAGCTAGCTTAAGTGGGAT GCAA	TGGAGATAACGCTA ACTATT	AGATAACGCAAACT ATT	0,0
Omy_RAD17632-23	С	Т	AAGCTCCTGCAGGTCATC TC	TCTGTGAACTGTCTTCTGC AAGT	CATGTGAGACCTTT GCA	CATGTGAGATCTTTG CA	0,0
Omy_RAD23577-43	Т	С	AATAGGAACCAAGCCCCA GC	CAGAGCCTGAACCCATGG AG	TCTGGCTCTGTCGGT CT	TCTGGCTCCGTCGGT CT	0,0
Omy_RAD26080-69	G	A	TGTGGGACAGCACATACT CC	CCAGGACACCAGTGGAGA AG	ATTAGTAGCATCAT CGAG	ATTAGTAACATCAT CGAG	0,0
	С	A	AATGGAATTGGCCCCAAC CC	TCTCCATTGTGTGTGTAATCA TGGT	ACAATTCAAATGAT TTA	ACAATTAAAATGAT TTA	0,0
Omy_RAD29700-18			CGAGGACGTTCATAGGGA	TCGATAAGTCCACCAGCTG	TGCAGGGACACCAC	TGCAGGAACACCAC	
Omy_RAD36848-7	G	А	GC AAGCCACACCGTTCAACT	G TGGCTTATCGCGCTCTAGT	CCT TGCAGGCGCCCGGC	CCT TGCAGGCGCACGGC	0,0
Omy_RAD38269-10	С	А	GA GTGGAGAGGGATTTTGGG	G TGACAGGACAAACACAAG	CCGC AAATGTGTATTTGTG	CCGC AAATGTGCATTTGT	0.5,0
Omy_RAD43612-42	Т	С	GG TGGTGCTTCAGTGCTGTC	CCA AGAGTGAAAACTGTGTGC	TA CAAGACACCGCACA	GTA CAAGACGCCGCACA	0,0
Omy_RAD45104-18	Α	G	AA TCAAAACCTGCAGGACTT	GG TGGTTATATCTACAGTACA	CAG TGCAAGACTTAAAA	CAG TGCAAGGCTTAAAA	0,0
Omy_RAD47080-54	А	G	GGA GTCGTCTGGAGGAGCTGA	GTTCGT GGGTGACGTTTTCCTTCAG	CGA GGCGAGCTTGGCCC	CGA GGCGAGTTTGGCCC	0,0
Omy_RAD47444-53	С	Т	AG	С	AAA	AAA	0,0
Omy_RAD48799-69	А	G	GCTGAGCCACCTACACAC AG	GTCTAACACTCGCAGCAGG T	CATCCTAGAATAGA AGT	CATCCTGGAATAGA AGT	0,0
Omy_RAD5026-64	G	А	TCAGCGTTATACCTGCAG GA	CCCTCCTAACCTGTGGTGT T	TGTAACGCAACACC ACA	TGTAACACAACACC ACA	0,0
Omy_RAD52458-17	С	А	ACGTGTCCCTGAGGATGG TA	AGCTCTAGGTCTGGGTCCT G	ATGGCCCC[CT]AAG AACCC	ATGGCCCA[CT]AAG AACCC	0,0
Omy_RAD52812-28	С	G	AGGAGTCCTGTCCCATGT CA	GCTTAAGGCTGTGGTATGT GG	CAACCTC[TC]ATTCC ACAT	CAACCTG[TC]ATTCC ACAT	0,0
Omy_RAD58213-70	А	Т	CCTGATGGGTGCTCTTCTC TC	AAACAGCATCATTATCCAT AGTGTT	TTTTTT[TA]AAAATA TACT	TTTTTT[AT]TAAATA TACT	0,0
Omy_RAD58835-15	G	Т	GTCTGCTAAGGTCCTGCA GG	GCCGACCATGAGAGACCT G	ATAGCTGCTGGGAC CCA	ATAGCTTCTGGGAC CCA	0,0
			GCAGGACACTGGTTCCCA	CCTGAGATTTGAGATCACT	TTAAAAAATATATA	TTAAAATATATATAT	
Omy_RAD62596-38	A	Т	AA CTCCTGCAGGTCATCTCTG	GGCT CTGTCTTGTGCTCAATGCC	TTA TCTGGCTGACACCTT	TA TCTGGTTGACACCTT	0.5,0
Omy_RAD66834-17	С	Т	G GACTCTAGACTGCTCCCT	TG GGCCTCAGTCTCCTTCCAG	TA CCGGAGACATT[CT]	TA CCGGAGATATT[CT]	0,0
Omy_RAD69583-33	С	Т	GC GCGCCTTGGTCTCCTTCAT	A ACACCACACTCCACAAAG	CGCGT TGCAGGACTTGCTTT	CGCGT TGCAGGAATTGCTTT	0,1
Omy_RAD7210-8	С	А	A CATCTCAGATCAGCCACC	CA AGCACAAATTCTTCTGTTG	GT ACTGTGGATTTGCA	GT ACTGTGGGGTTTGCA	0,0
Omy_RAD74691-49	Α	G	CG AGACAAAACCTGCAGGGG	TGCA AGCACGTTAAAACCAAAC	CAA TAAATTATATTTGAC	CAA TAAATTACATTTGAC	0,0
Omy_RAD77789-54	Т	С	AC TCAGTGGATGGAGTGTCC	TGTCA GGTCTTTGGCCTTGTTGCT	AG GCTGTGGAGATCAT[AG GCTGTGGAAATCAT[0,0
Omy_RAD88122-32	G	А	CT	G	CT]CG	CT]CG	0,0
*Omy_RAD16104-20	А	G	ATTCCAAAACCTGCAGGG GT	TCAGGATTTGGTAAGGTGG CC	AGGGCAAAG[AT]CA AAGG	AGGGCAAGG[AT]CA AAGG	0,0
*Omy_RAD35417-9	G	А	GCACTTGACCACATAGCT GG	ACTCCACACTCCACAAAGC A	TGCAGGACGTGCTT TGT	TGCAGGACATGCTT TGT	0,0
*Omy_RAD42793-59	Т	С	CACGGCTAGTGGCATGTA CC	CCACACCTGCATCAGTCTG T	CAGAGAATGCCAAC AGA	CAGAGAACGCCAAC AGA	0,0
*Omy_RAD47955-51	G	Т	AGTGTGCTAGAATGGGCC TG	ACCATGGGCAGTTCATTTC A	TTGGAATAGAATCT ATA	TTGGAATATAATCT ATA	0,0
*Omy_RAD66218-58	Т	C	CTGTGCAGGGAGACAGCT AG	GTGGTATCGTAGCATCGGG G	CTTGGAGTGTGTTG GTA	CTTGGAGCGTGTTG GTA	0,0
*Omy_RAD73204-63	G	с	CCTGGGCAATGACCTCCA C	AGCTCCCTTCTCTCTCCCTC	GTGCCCGCTCTCCAC CG	GTGCCCCCTCTCCAC CG	0,0
Omy_KAD/3204-03	U	C	C	MULLIUM			0,0

TGCT

GCT

*Omy_RAD76882-63	А	Т	GGTGGGGGGCAAACTCAGT A	TGTCTCAGCTTAGAATGAC AGATT	CAAATGAAAACTAT GTA	CAAATGAAATCTAT GTA	0,0
*Omy_RAD88028-7	G	А	TAGCCCAGTTCGGTTCCA AC	AGTGTCTTTGGTGCGTCCT C	TGCAGGGGCTGGGA AGG	TGCAGGAGCTGGGA AGG	0,0

Chapter 2: Genetic Baseline Expansion

Introduction

Distinct population aggregates of Chinook salmon (Oncorhynchus tshawytscha), steelhead trout (O. mykiss), and the species O. nerka (Sockeye salmon and kokanee), have evolved through the cumulative effects of selection and genetic drift (Waples 1991; Nielsen et al. 2009). The homing behavior (philopatry) displayed by Pacific salmon means that fish typically return to spawn in their natal rearing sites or stream of origin. This distinctive life history attribute can significantly restrict gene flow, shape regional variation, and influence demographics among naturally reproducing populations (Hasler and Scholz 1983; McIssac and Quinn 1988; Quinn et al. 1991). Genetic differentiation is most easily resolved among populations that are geographically distant, where degree of gene flow is generally correlated with relative migration distances and adjacency in stream networks. However, local adaptations and the distribution of suitable spawning habitat within stream networks may influence finer (regional) scale genetic structure among watersheds in close proximity (Beacham et al. 2006; Matala et al. 2012). The natural phenomenon of immigration or straying (a homing miscue) buffers the loss of genetic diversity in salmon populations (Milner and Bailey 1989), but the rate of straying exhibited by wild fish is generally low (Quinn 1993; Heard et al. 1995) and genetic structure between populations may persist despite moderate gene flow from straying (e.g., Neville et al. 2007). Some evidence indicates that hatchery-origin fish exhibit a higher rate of straying which may be affected by changes is fish passage protocols, transport through the hydro system, artificial rearing practices, or inadequate acclimation (imprinting to natal waters by juvenile salmon). An elevated rate of immigration between populations may erode local adaptations, and lead to changes in spatial and temporal variability within and/or among populations (Hess and Matala 2013).

In the Columbia River Basin, Chinook salmon have been studied in great detail (e.g., Narum et al. 2004; Waples et al. 2004; Beacham et al. 2006; Narum et al. 2008b; Matala et al. 2011), as have steelhead trout (Winans et al. 2004; Currens et al. 2009; Blankenship et al. 2012; Narum et al. 2011; Matala et al. 2016). The scope of Sockeye salmon genetic monitoring has been comparatively limited but has received greater attention in recent years (Gustafson et al. 1997; Iwamoto et al. 2012). Continued monitoring and evaluation of the genetic structure among salmon populations in the Columbia River Basin has guided managers in establishing and maintaining primary conservation units to protect fisheries resources. The delineation of such conservation units, including distinct population segment (DPS), evolutionarily significant unit (ESU), major population group (MPG), and viable salmonid population (VSP) is guided by a core set of criteria, including population ecology and viability, ancestry and descent, reproductive isolation, and genetic structure and local adaptation (Fraser and Bernatchez 2001; Fraser et al. 2011). Although an understanding of adaptive variation is critical to proper salmon management, the majority of genetic information available to managers is based on neutral genetic variation. Landscape genetics is an approach aimed at describing population differentiation relative to features in an organism's environment (Segelbacher 2010; Latch et al. 2011; Sepulveda-villet & Stepian 2012). Landscape genetics explores population differentiation relative to features in the environment such as migratory barriers (e.g., dams), or heterogeneous habitats such as variation in local climates or temperatures (Dionne et al. 2008; Narum et al. 2008). Although local adaptation may be inferred from landscape genetics (Olsen et al. 2011; Blankenship et al. 2012), inferences based primarily on neutral genetic differentiation risk

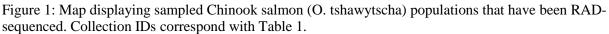
incorrectly identifying the underlying processes affecting population distinctions (Funk et al. 2012; Landguth & Balkenhol 2012). Techniques such as outlier detection methods, and genome wide association studies (GWAS) provide evidence of non-neutral population structure and allow a more resolved understanding of landscape differentiation beyond what can be concluded from neutral loci alone (Narum et al. 2010b; Matala et al. 2011; Ackerman et al. 2012a, Bourret et al. 2013). Putative non-neutral population differentiation can then be interpreted in the context of contemporary risks and vulnerabilities (e.g., climate change) for salmonid populations in the Columbia River Basin, revealing highly correlative relationships between genetic variation and the physical environment (see Limborg et al 2011). This additional information may ultimately influence conservation criteria for delineating populations across diverse landscapes.

Project objectives and higher level harvest management questions:

Objective two of project #2008-907-00 (Genetic Assessment of Columbia River Stocks) describes efforts to evaluate genetic diversity among populations that will inform managers in the areas of harvest monitoring, and conservation monitoring. Our approach involves the collection, analysis, interpretation and distribution of genotypic data. These data are being compiled as species-specific reference baselines for characterizing Chinook salmon, steelhead trout, and O. nerka population structure specific to the Columbia River Basin. Baselines were initially created from genotypes at single nucleotide polymorphism (SNP) loci, which are highly prolific in the genome and provide substantial coverage for linkage analyses (Moen et al. 2008). SNPs are amenable to superior high throughput capabilities and are relatively easily amplified and scored compared to other types of genetic markers, even with poor quality tissue (DNA) sources (Campbell and Narum 2008). Because SNPs are commonly found within or adjacent to coding and regulatory regions of a genome, corresponding allelic diversity and allele frequency variation are likely to be informative for understanding non-neutral influences (i.e. selection and local adaptation) on observed population structure. Large numbers of highly informative SNP loci have been discovered through our ongoing efforts using a next generation sequencing technology known as restriction-site associated DNA (RAD) sequencing (Miller et al. 2007; Baird et al. 2008; Hecht et al. 2013). Our two primary objectives for utilizing SNP baselines to monitor salmon species in the Columbia River are 1) genetic stock identification (GSI) of natural-origin stocks, and 2) parentage based tagging (PBT), a large-scale, non-lethal tagging technology for monitoring and evaluating hatchery stocks. The collaborative, inter-agency application of GSI continues to provide invaluable monitoring capabilities to understand relative stock proportions in sport, commercial and tribal harvests, as well as monitoring of stock specific run-timing at Bonneville Dam, Lower Granite Dam and other fish weirs in the basin. Moreover, GSI is being used in concert with PBT to monitor trends in hatchery production, harvest of hatchery fish, and population attributes of specific hatcheries (e.g., stray rates, survival/mortality, migratory behavior, hatchery/wild interactions). Additionally, our genetic baselines are being used to characterize populations in archival studies, in efforts to reintroduce fish into extirpated regions within historic ranges, and in domestication studies.

Time line for completion of objectives:

Objectives will be ongoing and our most recent results will be reported each year. As new genetic techniques are developed they will be applied to our objectives and data will be routinely uploaded to the FishGen.net database (<u>http://www.fishgen.net/home.aspx</u>) as a repository for data sharing and collaboration.


Methods

Baseline sampling and protocols:

Existing baselines comprised of putatively neutral SNPs (e.g. 180 loci for O. myiss) have been well characterized and are currently used extensively for genetic stock identification (GSI) as described in Hess et al. 2014 and Hess et al. 2015. Our most recent efforts focus on expanding genetic characterizations throughout the basin that will provide information about adaptive potentials and natural selective forces contributing to stock structure. Next generation sequencing technologies in genotyping (RAD) were initiated by the CRITFC genetics lab in order to expand SNP panels for Chinook salmon, Coho salmon, Steelhead and Pacific lamprey (Hess et al. 2016). We have begun employing the RAD sequencing approach for SNP discovery in Sockeyesalmon. Primer development and further screening are underway in order to finalize an expanded SNP panel for GSI of O. nerka in the Columbia River. Species or population specific details of laboratory methods are available in Hess et al. (2012) and in Monitoring Methods: https://www.monitoringmethods.org/Protocol/Details/230 (ID#230; owner Matthew Campbell). For methods using genotyping by sequencing, or RAD sequencing see Monitoring Methods #4144, owner: Nathan Campbell. SNP discovery using the RAD sequencing technique is described in Chapter-1 of this report. In 2016 we did not expand on the reference populations in our baseline which currently includes all extant and reintroduced Sockeye salmon stocks and the majority of extant native kokanee stocks in the Columbia River Basin.

Expansion and status of reference baselines:

Our three primary goals for Chinook salmon, Sockeye salmon and steelhead trout are: 1) genetic stock identification (GSI) analyses that will be used for monitoring of fishery returns through the migratory corridor, including harvest GSI in the lower Columbia River, and fish passage GSI at Bonneville and Lower Granite dams (see sections 3 & 4 of this report), 2) PBT broodstock sampling and genotyping of Columbia River Basin hatcheries for evaluating hatchery stock composition in various fisheries and to monitor hatchery impacts on wild populations, and 3) continued baseline maintenance and expansion using RAD-tag sequencing for application in various analyses, including population structure analyses, investigation of landscape genetics, and adaptive differentiation among populations. We collected RAD sequence data for 25 discrete collections or populations of Chinook salmon (n=1032 total; Table 1, Figure 1) and 56 discrete collections or populations of anadromous steelhead (Table 2, Figure 2) from throughout the Columbia Basin. RAD sequencing proceeded using the Sbf1 restriction enzyme protocol found at: https://www.monitoringmethods.org/Method/Details/4144. The program STACKS was used to identify and quality-filter SNPs from raw Illumina sequence data (Catchen et al. 2011). Highquality SNPs were then used to assess population structure based on principal component analyses (PCA) and pairwise genetic distance displayed in neighbor joining (NJ) trees using the 'adegenet' package in R (Jombart & Ahmed 2011). Reference baselines for GSI have not yet been established from expanded SNP panels and current GSI methods used for stock assessment are based on the panels described in Hess et al. (2016). For O. nerka, we initiated efforts to expand our current SNP panel from 92 SNPS to greater than 500 SNPs. SNP discovery for O. nerka was conducted using an ascertainment group of sampled individuals (Table 3, Figure 3) assembled from all major groups in the basin. This approach maximizes representation of existing diversity in the basin, while minimizes bias that may arise from subsequently evaluating genetic structure of non-represented groups. After the quality filtering phase of the analysis we have collected sequence genotypes for hundreds of informative RAD markers. Selection of SNPs for the expanded baseline was based on highest absolute differences in mean allele frequency between major groups (e.g., kokanee vs. Sockeye salmon; Snake River vs. Columbia River origin) and based on observed minor allele frequencies (0.15<MAF<0.35).

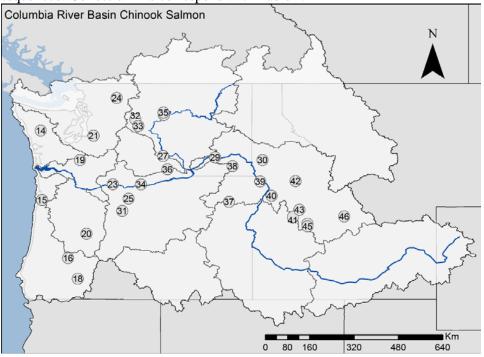
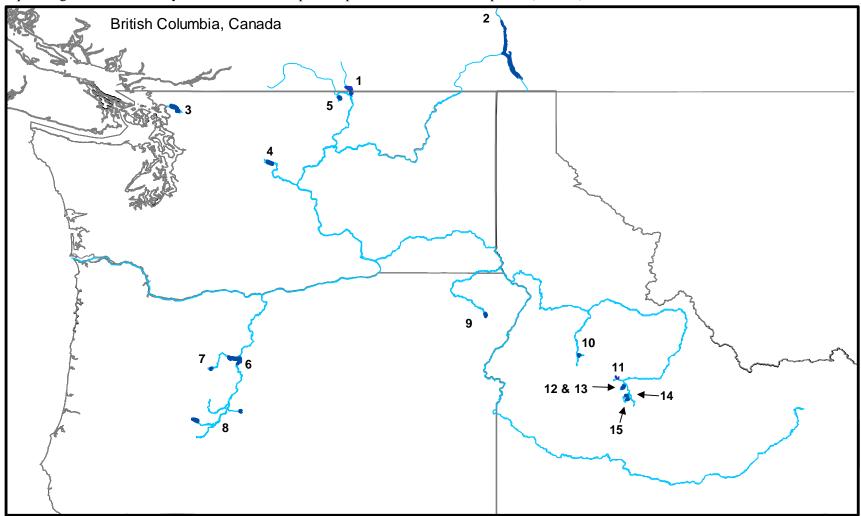



Figure 2: Map displaying sampled anadromous steelhead (O. mykiss) populations that have been RAD-sequenced. Collection IDs correspond with Table 2.

		Population								
ID#	Name	Abbr.	BPA Subbasin	<u> </u>	Lineage	Run-type	Origin	lat	long	(n)
19	Cowlitz	COW	Cowlitz		SC	Fa	Н	46.510	-122.615	43
20	McKenzie	MCK	Willamette		SC	Sp	Н	44.123	-122.402	48
23	Spring	SPR	Columbia Gorge		SC	Fa	Н	45.727	-121.546	39
25	Deschutes	DES	Deschutes		SC	Fa	Ν	45.257	-121.039	28
26	Wenatchee	WNC	Wenatchee		SC	Su	Ν	47.616	-120.723	45
27	Priest	PRH	Columbia L. Mid		SC	Fa	Н	46.642	-119.914	46
28	Wells	WEL	Columbia U. Mid		SC	Su	Н	47.973	-119.888	45
29	Lyons Ferry	LYO	Snake Lower		SC	Fa	Н	46.595	-118.229	48
30	Clearwater	CLW	Clearwater		SC	Fa	Ν	46.513	-116.686	33
31	Warm Springs	WAR	Deschutes		ICRST	Sp	Ν	44.862	-121.245	47
32	White	WHI	Wenatchee		ICRST	Sp	Ν	47.834	-120.819	18
33	Nason/Chiwawa	WEN	Wenatchee		ICRST	Sp	Ν	47.616	-120.723	33
34	John Day	JDR	John Day		ICRST	Sp	Ν	45.721	-120.635	12
35	Methow	MET	Methow		ICRST	Sp	Ν	48.048	-119.905	47
36	Yakima	YAK	Yakima		ICRST	Sp	Ν	46.212	-119.772	47
37	Catherine	CAT	Grande Ronde		ICRST	Sp	Ν	45.158	-117.779	43
38	Tucannon	TUC	Tucannon		ICRST	Sp	Ν	46.315	-117.662	46
39	Imnaha	IMN	Imnaha		ICRST	Sp/Su	Η	45.817	-116.765	48
40	Rapid	RAP	Salmon		ICRST	Sp	Н	45.353	-116.395	46
41	McCall	MCH	Salmon		ICRST	Sp/Su	Н	44.667	-115.705	43
42	Newsome	NEW	Clearwater		ICRST	Sp	Ν	45.828	-115.615	40
43	Johnson Creek	JOC	Salmon		ICRST	Sp/Su	Ν	44.899	-115.492	68
44	Marsh	MSH	Salmon		ICRST	Sp/Su	Ν	44.449	-115.231	39
45	Capehorn	CAP	Salmon		ICRST	Sp/Su	Ν	44.358	-115.228	37
46	Pahsimeroi	PAH	Salmon		ICRST	Sp/Su	Н	44.682	-114.039	43
						_				

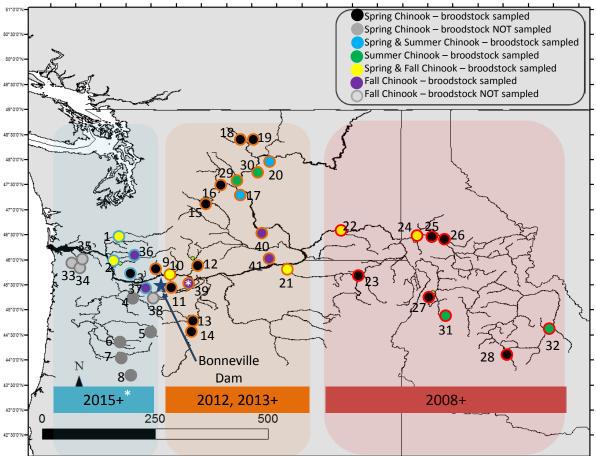

Table 1: Geographic distribution and locations of Chinook salmon RAD populations within the Columbia Basin. Populations are split between a southern coastal (SC) lineage, or inner Columbia River (ICRST) lineage.

		Population [
ID#	Name	Abbr	BPA Subbasin	Lineage	lat	long	(n)
1	Abernathy	ABER	Elochoman	LC	46.225	-123.148	21
2	Asotin	ASOT	Asotin	MUCLS	46.322	-117.137	45
3	Bargamin	BARG	Salmon	MUCLS	45.571	-115.192	24
4	Boulder	BOUL	Clearwater	US	46.675	-114.739	47
5	Captain John	CAPJ	Snake Hells Canyon	MUCLS	46.153	-116.934	43
6	Catherine	CATH	Grande Ronde	MUCLS	45.307	-117.866	36
7	Chamberlain	CHAM	Salmon	MUCLS	45.454	-114.931	48
8	Chiwaukum	CHIW	Wenatchee	MUCLS	47.687	-120.741	34
9	Crooked	CROO	Clearwater	US	45.821	-115.528	45
10	Dworshak Hatchery	DWOR	Clearwater	US	46.502	-116.330	27
11	Eagle	EAGL	Willamette	LC	45.351	-122.384	46
12	East Fork Hood	EFHJ	Hood	LC	45.563	-121.592	46
13	East Fork Lewis	ELEW	Lewis	LC	45.853	-122.780	38
14	East Fork Moose/Selway	EMOO	Clearwater	US	46.187	-114.899	40
15	East Fork Potlatch	EPOT	Clearwater	US	46.796	-116.421	34
16	Fifteen	FIFT	Fifteenmile Creek	MUCLS	45.506	-121.128	47
17	Fish/Lochsa	FISH	Clearwater	US	46.333	-115.347	47
18	Parkdale	PAHH	Hood	LC	45.523	-121.622	46
19	Cow	COW	Imnaha	MUCLS	45.768	-116.750	14
20	John Day Main Fork - Beech	JDMA	John Day	MUCLS	44.412	-119.116	30
21	Joseph	JOSE	Grande Ronde	MUCLS	46.027	-117.018	46
22	Kalama Summer	KALS	Kalama	LC	46.032	-122.870	46
23	Kalama Winter	KALW	Kalama	LC	46.032	-122.870	36
24	Klickitat - Summer run	KLIS	Klickitat	LC	45.716	-121.259	132
25	Klickitat - Winter run	KLIW	Klickitat	LC	45.716	-121.259	99
26	Lake/Lochsa	LAKE	Clearwater	US	46.463	-114.997	42
27	Little Clearwater/Selway	LCLW	Clearwater	US	45.753	-114.775	47
28	Methow	LIBB	Methow	MUCLS	48.228	-120.114	18
29	Lick Creek	LICK	Salmon	MUCLS	45.062	-115.760	43
30	Loon	LOON	Salmon	MUCLS	44.808	-114.811	45
31	LittleSheep	LSHE	Imnaha	MUCLS	45.477	-116.930	37
	<u> </u>						

Table 2: Geographic distribution and locations of steelhead RAD populations in the Columbia Basin. Populations belong to three possible lineages, lower coastal (LC), upper snake (US), or middle upper Columbia / lower snake (MUCLS).

32	Marsh	MARS	Salmon	MUCLS	44.449	-115.230	45
33	Upper Middle Fork JD	NFJD	John Day	MUCLS	44.588	-118.506	46
34	Mill Creek	MILL	Columbia Gorge	MUCLS	45.606	-121.187	46
35	Minthorn	MINT	Umatilla	MUCLS	45.669	-118.620	47
36	Mission	MISS	Clearwater	MUCLS	46.367	-116.735	40
37	Naches -Nile Creek	NACH	Yakima	MUCLS	46.861	-121.048	46
38	Middle North Fork JD	MFJD	John Day	MUCLS	44.838	-118.477	47
39	North Fork Lewis	NLEW	Lewis	LC	45.956	-122.555	40
40	Little Rock/Mad	NSAN	Willamette	LC	44.746	-122.395	28
41	Pahsimeroi Hatchery	PAHH	Salmon	MUCLS	44.663	-114.027	29
42	Rock	ROCK	Lower Mid-Columbia	MUCLS	45.747	-120.436	40
43	Satus	SATU	Yakima	MUCLS	46.196	-120.612	47
44	Sawtooth	SAWN	Salmon	MUCLS	44.150	-114.883	41
45	South Fork John Day	SFJD	John Day	MUCLS	44.331	-119.565	80
46	Skamania Stock	SKAM	Willamette	LC	45.241	-122.281	47
47	South Fork Santiam/Wiley	SSAN	Willamette	LC	44.415	-122.673	31
48	Tenmile	TENM	Clearwater	US	45.805	-115.683	41
49	Tucannon	TUCN	Tucannon	MUCLS	46.309	-117.657	46
50	Upper Grande Ronde	UGRT	Grande Ronde	MUCLS	45.731	-117.864	43
51	Umatilla	UMAT	Umatilla	MUCLS	45.699	-118.396	46
52	West Fork Yankee Fork	WFYF	Salmon	MUCLS	44.349	-114.725	46
53	Whitebird	WHIT	Salmon	MUCLS	45.752	-116.322	44
54	West Fork Hood	WHOO	Hood	LC	45.559	-121.692	45
55	Winthrop	WNFH	Methow	MUCLS	48.475	-120.189	47
56	West Side Willamette	WWIL	Willamette	LC	44.747	-123.147	44

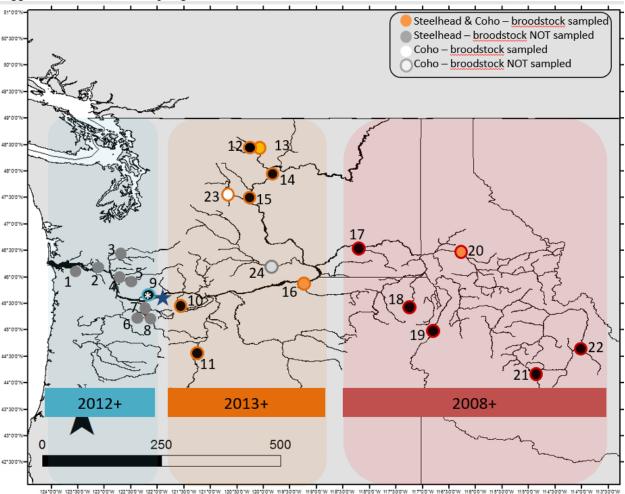
Figure 3: Map displaying sampled Sockeye salmon and Kokanee (*O. nerka*) populations. Ascertainment collections were genotyped using RAD sequencing for SNP discovery; numbers on the map correspond to collection descriptions (Table 3).



		reference p	<u>population</u>			
ID#	20200	state	ragion	sub-basin	life	origin
ID#	name	state	region	sub-basiii	history	origin
1	Osoyoos Lake	Canada	Upper COL.	na	SOCK	NOR
2	Meadow Creek	Canada	Upper COL.	na	KOK	HAT
3	Lake Whatcom	WA	Puget Sound	na	KOK	HAT
4	Wenatchee Lake	WA	Upper COL.	Wenatchee	SOCK	NOR
5	Palmer Lake	WA	Upper COL.	Okanogan	KOK	stock
6	Lake Billy Chinook	OR	Middle Columbia	Deschutes	KOK	stock
7	Suttle Lake/ Link Creek	OR	Middle Columbia	Deschutes	KOK	stock
8	upper Deschutes	OR	Middle Columbia	Deschutes	KOK	stock
9	Wallowa Lake	OR	Snake	Grande Ronde	KOK	stock
10	Warm Lake	ID	Snake	Salmon (S. F.)	KOK	NOR
11	Stanley Lake	ID	Snake	Salmon (Sawtooth)	KOK	?
12	Redfish Lake	ID	Snake	Salmon (Sawtooth)	SOCK	NOR
13	Fishhook Creek	ID	Snake	Salmon (Sawtooth)	KOK	NOR
14	Pettit Lake	ID	Snake	Salmon (Sawtooth)	KOK	stock
15	Alturas Lake	ID	Snake	Salmon (Sawtooth)	KOK	stock

Table 3: Geographic distribution and locations of O. nerka reference collections in the ascertainment panel for SNP discovery.

The PBT tagging technology has been implemented through annual hatchery broodstock sampling to create a temporally structured parental genotype baseline. PBT broodstock were non-lethally sampled by collected fin tissue from adult fish returning to hatcheries in the Columbia River basin (Figures 4 and 5, Tables 4 and 5). Required data for PBT sampling includes a hatchery record of phenotypic sex and spawn date. Additional and optional information was collected at some hatcheries when resources allowed, including fork length, and mated cross records of male and female broodstock individuals. The PBT baseline was expanded to include spawn years 2012 to 2015, including n=19,876 spring Chinook salmon, n=35,912 summer/fall Chinook salmon, and n=5357steelhead trout. DNA was extracted using modified Chelex extractions and Qiagen DNeasy 96 kits. Extracted genomic DNA was genotyped using the following protocols: 1) Fluidigm dynamic 96.96 array chips at 96 SNP loci (https://www.monitoringresources.org/Document/Method/Details/1332), and 2) GTseq at 298 SNP loci (https://www.monitoringresources.org/Document/Method/Details/5446). Hatchery offspring that are subsequently sampled either as juveniles or adults (e.g., in a fishery) are then PBT assigned back to spawned parents which provides the individual age and specific hatchery of origin for each offspring.


Figure 4: Spring Chinook salmon and summer/fall Chinook Salmon PBT hatcheries. Star = Bonneville Dam, Gray = broodstock NOT sampled. The proportion (%) of released smolts that were tagged is estimated from the Fish Passage Center in migration year 2015.

121 to w 123 to w 123 to w 123 to w 123 to w 121 to w 121 to w 121 to w 123 to w 120 to w 1

PBT began with Chinook salmon and steelhead hatchery stocks in the Snake River basin of Idaho (2008-present; Steele et al., 2013; Steele et al., 2015). However, we have expanded PBT coverage to include Chinook salmon, steelhead, and Coho salmon broodstocks in all hatcheries above Bonneville Dam using expanded SNP panels of 261 loci for steelhead and 298 loci for Chinook salmon (see Chapter 1 in Hess et al. 2016). Each year the expansion effort is integrated with existing Snake River PBT baselines as data comes available. Adopting PBT to the broader Columbia River basin facilitates our ability to genetically track millions of salmonids and provide opportunities to address a variety of parentage-based research and management questions, including stock contributions to fisheries (Byrne et al., 2015), estimates of stock-specific abundance and run-timing at dams (Hess et al., 2016a; Vu et al. 2015), and use of thermal refugia during migration (Hess et al., 2016b).

Figure 5: Steelhead and coho salmon PBT hatcheries. Star = Bonneville Dam. The proportion (%) of released smolts that were tagged is estimated from the Fish Passage Center in migration year 2015. Only 77% of broodstock was sampled for PBT in 2015. Skamania released above Bonneville dam are PBT tagged (SY2015+, not sampling broodstock for below Bonneville releases).

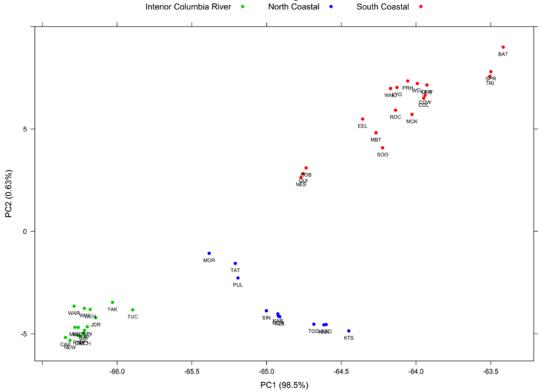
Map 1	lineage	spawning	Bonneville	Initial	· ¬ <i>J</i> ·
IĎ		hatchery	region	PBT year	Genotyped
1	SPR	Cowlitz Solmon	halow	2014	
2	SPR	Cowlitz Salmon Kalama Falls	below below	2014 2015	
3	SPR				
4	SPR	Lewis River	below	2015	
4 5	SPR	Clackamas	below	na	
		Marion Forks	below	na	
6	SPR	South Santiam	below	na	
7	SPR	McKenzie	below	na	
8	SPR	Willamette	below	na	
9	SPR	Carson NFH	above	2012	2012-2015
10	SPR	Little White Salmon NFH	above	2013	2013-2015
11	SPR	Parkdale	above	2012	2012-2015
12	SPR	Klickitat	above	2008	2008-2015
13	SPR	Warm Springs NFH	above	2012	2012-2015
14	SPR	Round Butte	above	2012	2012-2015
15	SPR	Cle Elum SRF	above	2012	2012, 2014-2015
16	SPR	Leavenworth NFH	above	2013	2013
17	SPR	Eastbank	above	2012	tissues @ WDFW
18	SPR	Methow	above	2012	2012-2015
19	SPR	Winthrop NFH	above	2013	2013-2015
20	SPR	Chief Joseph	above	2014	2014-2015
21	SPR	Umatilla	above	2012	2012-2015
22	SPR	Lyons Ferry	Snake	2008	2008-2015
23	SPR	Lookingglass	Snake	2008	2008-2015
24	SPR	Nez Perce Tribal	Snake	2008	2008-2015
25	SPR	Dworshak NFH	Snake	2008	2008-2015
26	SPR	Clearwater	Snake	2008	2008-2015
27	SPR	Rapid River	Snake	2008	2008-2015
28	SPR	Sawtooth	Snake	2008	2008-2015
1 & 17	SUM	Eastbank	above	2012	2012
2 & 29	SUM	Entiat NFH	above	2013	2013-2014
3 & 30	SUM	Wells	above	2012	2012-2014
4 & 20	SUM	Chief Joseph	above	2012	2012-2014
5 & 31	SUM	SF Salmon, McCall	Snake	2008	2008-2015
6 & 32	SUM	Pahsimeroi	Snake	2008	2008-2015
1	FALL	NF Klaskanine	below	na	
2	FALL	SF Klaskanine	below	na	
3	FALL	Big Creek	below	2015 (~50%	
J		DIG CICCK	UCIUW	2013 (~30%	

Table 4: Chinook salmon hatchery broodstock sampled for PBT baselines (see Figure 4).

				sampled)	
4	FALL	Cowlitz Salmon	below	2014	
5	FALL	Toutle	below	2015	
6	FALL	Kalama Falls	below	2015	
7	FALL	Washougal	below	2015	
8	FALL	Bonneville, Tanner Cr Tule	below	na	
9	FALL	Little White Salmon NFH	above	2013	2013-2014
10	FALL	Spring Creek NFH	above	2015	
11	FALL	Priest Rapids	above	2012	2012-2014
12	FALL	Prosser	above	2012 (missed 2014)	2012-2014
13	FALL	Umatilla	above	2012	2012-2014
14	FALL	Lyons Ferry	Snake	2011	2011-2015
15	FALL	Nez Perce Tribal	Snake	2011	2011-2015

Table 5: Steelhead and Coho salmon hatchery broodstock sampled for PBT baselines (see Figure 5).

		spawning	Bonneville	Initial	genotyped
Map 1 ID	species	hatchery	region	PBT year	
1	steelhead	Big Creek	below	na	
2	steelhead	Abernathy FTC	below	2012	
3	steelhead	Cowlitz Trout	below	na	
4	steelhead	Kalama Falls	below	na	
5	steelhead	Merwin	below	na	
6	steelhead	Clackamas	below	na	
7	steelhead	Sandy	below	na	
8	steelhead	Eagle Creek NFH	below	na	
9	steelhead	Skamania	below	*	2013-2015
10	steelhead	Parkdale	above	2012	2012-2015
11	steelhead	Round Butte	above	2013	2013-2015
12	steelhead	Methow (Twisp)	above	2013	2013-2015
13	steelhead	Winthrop NFH	above	2012	2012-2015
14	steelhead	Wells	above	2013	2013-2015
15	steelhead	Eastbank	above	2012	tissues @ WDFW
16	steelhead	Umatilla	above	2012	2012-2015
17	steelhead	Lyons Ferry	Snake R.	2009	2009-2015
18	steelhead	Wallowa	Snake R.	2009	2009-2015
19	steelhead	Oxbow	Snake R.	2008	2008-2015
20	steelhead	Dworshak NFH	Snake R.	2008	2008-2015
21	steelhead	Sawtooth	Snake R.	2008	2008-2015

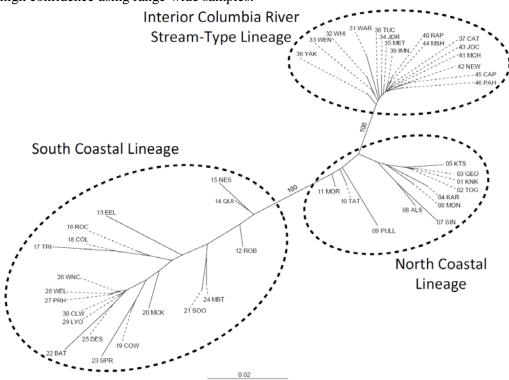
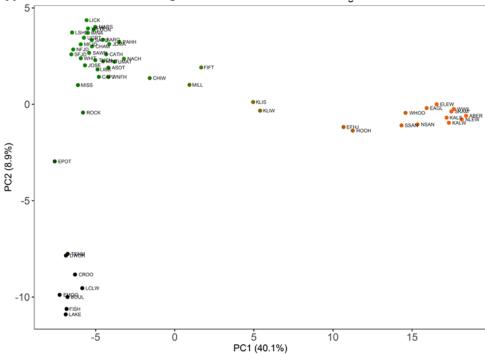

22	steelhead	Pahsimeroi	Snake R.	2008	2008-2015
1	coho	Winthrop NFH	above	2012	2012-2014
2	coho	Leavenworth NFH	above	2012	2012-2014
3	coho	Prosser	above	na	
4	coho	Umatilla	above	2012	
5	coho	Dworshak NFH	Snake	2012	

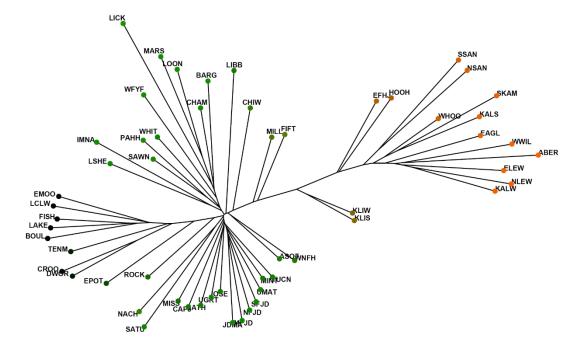
* 2013-2015 (all brood), 2016+ (only above Bonneville dam releases)

Results

For application in GSI of Chinook salmon, we identified 19,703 high-quality SNPs with RAD sequencing (Hecht et al. 2015). A PCoA clustering plot (Figure 6) and the genetic distance topology displayed in a neighbor-joining tree (Figure 7) both show distinction between Columbia River populations belonging to the south coastal genetic lineage and populations belonging to the interior Columbian River lineage.

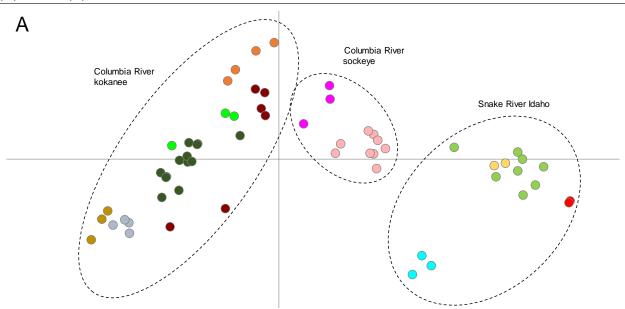
Figure 6: Principle component analysis (PCA) of Chinook salmon RAD populations within the Columbia Basin. When combined with range-wide samples, SNPs effectively distinguish two lineages within the Columbian basin: Interior Columbian River and South Coastal.

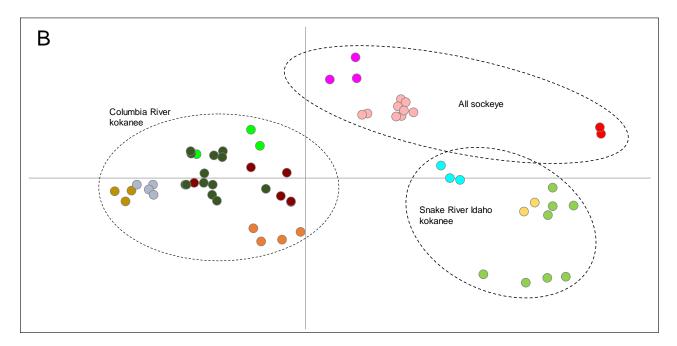





Figure 7: Chinook salmon neighbor-joining tree using RAD data. RAD SNPs distinguish lineages with high confidence using range-wide samples.

For anadromous steelhead, we identified 25,526 high-quality SNPs within the Columbia Basin with RAD sequencing. A PCoA clustering plot (Figure 8) and the genetic distance topology displayed in a neighbor-joining tree (Figure 9) both identify three distinct groups: the coastal genetic lineage, and an upper snake and middle upper Columbia / lower snake component of the inland genetic lineage.

Figure 8: Principle component analysis (PCA) of steelhead RAD populations in the Columbia Basin. Black represents the upper snake lineage, orange represents the coastal lineage, and green represented the upper middle Columbia lineage.





For *O. nerka* SNP discovery, quality filtering of RAD sequencing data resulted in >6400 SNPs that were selected for further screening to maximize available information. After the quality filtering phase of the analysis we have collected genotypes for 484 informative RAD markers that exhibit a strong ability to differentiate major population groups of *O. nerka* within the basin as displayed in PCoA clustering plots (Figure 10). These include: 174 tags selected for high MAF among all ascertainment groups, 4 tags that are informative for differentiating between an out-group from Lake Ozette (see Hess et al. 2016) and all Columbia River Basin stocks, 8 tags that differentiate between sockeye salmon and kokanee life history types, 11 tags that differentiate between two upper Columbia sockeye salmon stocks, 104 tags that generally differentiate between Snake and Columbia river regions, and 137 tags that are informative for Redfish Lake sockeye salmon parentage. Primer design has been completed and testing of the new expanded SNP panel is scheduled to occur in 2017 using approximately 1000 samples from diverse locations.

Figure 10: PCoA plot showing clustering of O. nerka RAD collections used in SNP discovery. Ellipses group ascertainment samples by either life history type (kokanee or Sockeye) and by region (Columbia or Snake rivers). Note the exception in which Wallowa Lake kokanee from the Snake River in Oregon group with Columbia River kokanee. The X-axis in the plots represents PC1. The X-axis represents either PC2 (A) or PC3 (B).

The current expanded PBT baseline is comprised of spring Chinook salmon (n=18,797), summer/fall Chinook salmon (n=32,830), and steelhead (n=5,069) from the Columbia River basin that were successfully genotyped at a minimum of 90% of the loci in respective panels (Table 6).

Table 6: Chinook and steelhead PBT baselines throughout the Columbia River basin. Chinook and steelhead hatchery programs are shown, along with run type, lineage and years of availability. Chinook and steelhead were each genotyped using 96 SNPs (X), but Chinook were also genotyped at 298 SNPs (X), whereas steelhead were genotyped using 192 SNPs (X), and 269 SNPs (X) as shown. Chinook collections for which data are not yet available are denoted in red (i.e., X).

								Ye	ar				
Hatchery	Species	Code	Run type	Lineage	2008	2009	2010	2011	2012	2013	2014	2015	
Clearwater Fish Hatchery	hery Chinook OtsCLWH Spring Interior str					Х	Х	Х	Х	Х	Х	Х	
Clearwater Fish Hatchery - Powell Facility	Chinook	OtsPOWP	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х	
Dworshak National Fish Hatchery	Chinook	OtsDWOR	Spring	Interior stream type	Х	Х	Х	Х	X	Х	Х	Х	
Lookingglass Fish Hatchery - Catherine Creek	Chinook	OtsCTHW	Spring/Summer	Interior stream type	X	X	X	X	X	X	X	X	
Lookingglass Fish Hatchery - Grande Ronde	Chinook	OtsGRUW	Spring	Interior stream type	X	X	X	X	X	X	X	X	
Lookingglass Fish Hatchery - Imnaha River	Chinook	OtsIMNW	Spring/Summer	Interior stream type	X	Х	Х	Х	Х	Х	Х	Х	
Lookingglass Fish Hatchery - Lookingglass Creek	Chinook	OtsLOOK	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х	
Lookingglass Fish Hatchery - Lostine River	Chinook	OtsLSTW	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х	
Lyons Ferry Fish Hatchery	Chinook	OtsLYON	Spring	Interior stream type	*	*	*	*	Х	Х	Х	Х	
Lyons Ferry Fish Hatchery - Tucannon River	Chinook	OtsTUCW ^a	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х	
Lyons Ferry Fish Hatchery	Chinook	OtsLYON_1	Fall	Interior ocean type	*	*	*	Х	Х	Х	Х	Х	
McCall Fish Hatchery - Johnson Creek	Chinook	OtsJHNW	Spring/Summer	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х	
McCall Fish Hatchery - South Fork Salmon	Chinook	OtsMCCA	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х	
Nez Perce Tribal Fish Hatchery (Fall)	Chinook	OtsNPFH_1	Fall	Interior ocean type	*	*	*	Х	Х	Х	Х	Х	
Nez Perce Tribal Fish Hatchery (Spring)	Chinook	OtsNPFH	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х	
Pahsimeroi Fish Hatchery	Chinook	OtsPAHH	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х	
Rapid River Fish Hatchery	Chinook	OtsRAPH	Spring	Interior stream type	X	X	X	X	X	X	X	X	
Sawtooth Fish Hatchery	Chinook	OtsSAWT	Spring	Interior stream type	X *	X							
Big Creek Hatchery	Chinook	OtsBIG OtsCAR	Fall	Interior ocean type	*	*	*	*	-	-		X	
Carson National Fish Hatchery Chief Joseph Hatchery (Spring)	Chinook Chinook	OtsCAR OtsCJH sp	Spring Spring	Interior stream type	*	*	*	*	X *	X *	X X	X X	
Chief Joseph Hatchery (Spring) Chief Joseph Hatchery (Summer/Fall)	Chinook	OtsCJH_sp OtsCJH sufa	Spring Summer	Interior stream type Interior ocean type	*	*	*	*		X	X	X	
Cowlitz Salmon	Chinook	OtsCOW	Spring	Interior stream type	*	*	*	*	*	×	*	*	
Eastbank Fish Hatchery	Chinook	OtsEASTBK	Summer	Interior ocean type	*	*	*	*	X	*	*	*	
Entiat National Fish Hatchery	Chinook	OtsENFH	Summer	Interior ocean type	*	*	*	*	*	Х	Х	Х	
Kalama Falls	Chinook	OtsKAL	Spring	Interior stream type	*	*	*	*	*	*	*	*	
Klickitat State Fish Hatchery	Chinook	OtsKH	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х	
Leavenworth National Fish Hatchery	Chinook	OtsLNFH	Spring	Interior stream type	*	*	*	*	*	Х	Х	Х	
Lewis River	Chinook	OtsLEW	Spring	Interior stream type	*	*	*	*	*	*	*	*	
Little White Salmon National Fish Hatchery (Fall)	Chinook	OtsLWS_sufa	Fall	Interior ocean type	*	*	*	*	*	Х	Х	Х	
Little White Salmon National Fish Hatchery (Spring)	Chinook	OtsLWS_sp	Spring	Interior stream type	*	*	*	*	*	Х	Х	Х	
Methow State Fish Hatchery	Chinook	OtsMETH	Spring	Interior stream type	*	*	*	*	Х	Х	Х	Х	
Parkdale Fish Facility	Chinook	OtsPFF	Spring	Interior stream type	*	*	*	*	Х	Х	Х	Х	
Priest Rapids Hatchery	Chinook	OtsPRH	Fall	Interior ocean type	*	*	*	*	Х	Х	Х	Х	
Round Butte Fish Hatchery	Chinook	OtsRB	Spring	Interior stream type	*	*	*	*	Х	Х	Х	Х	
Spring Creek NFH	Chinook	OtsSPCR	Fall	Interior ocean type	*	*	*	*	*	*	*	Х	
Toutle	Chinook	OtsTOU	Fall	Interior ocean type	*	*	*	*	*	*	*	*	
Umatilla Fish Hatchery (Fall)	Chinook	OtsUMA_sufa	Fall	Interior ocean type	*	*	*	*	Х	Х	Х		
Umatilla Fish Hatchery (Spring)	Chinook	OtsUMA_sp	Spring	Interior stream type	*	*	*	*	X *	X *	X *	X *	
Washougal	Chinook	OtsWAS	Fall	Interior ocean type	*	*	*	*	-				
Warm Springs National Fish Hatchery	Chinook	OtsWSNFH	Spring	Interior stream type	*	*	*	*	X	X	X	X	
Wells Fish Hatchery	Chinook Chinook	OtsWELLS OtsWTP	Summer	Interior ocean type	*	*	*	*	X *	X X	X X	X X	
Winthrop National Fish Hatchery Yakima Nation Prosser Hatchery	Chinook	OtsPRO	Spring Fall	Interior stream type Interior ocean type	*	*	*	*	Х	X	^ *	X	
Yakima River Roza Dam-Integrated	Chinook	OtsYRint	Spring	Interior stream type	*	*	*	*	X	*	Х	X	
Yakima River Roza Dam-Segregated	Chinook	OtsYRseg	Spring	Interior stream type	*	*	*	*	X	*	*	X	
		-	· -		V	V	V	V		V	V		
Dworshak National Fish Hatchery	Steelhead	OmyDWOR	Unknown	Interior	X X	X							
Little Sheep Creek Hatchery	Steelhead	OmyLSCR	Summer	Interior	*							X	
Lyons Ferry Fish Hatchery- Touchet	Steelhead	OmyTOUW ^b	Summer	Interior		X	Х	X	X	X	X	X	
Lyons Ferry Fish Hatchery	Steelhead	OmyLYON ^c	Unknown	Interior	*	Х	Х	Х	Х	N/A	N/A	N/A	
Lyons Ferry Fish Hatchery - Grande Ronde	Steelhead	OmyCGRW ^b	Summer	Interior	Х	Х	Х	Х	Х	Х	Х	Х	
Lyons Ferry Fish Hatchery - Tucannon	Steelhead	OmyTUCW ^b	Summer	Interior	Х	Х	Х	Х	Х	Х	Х	Х	
Lyons Ferry Fish Hatchery - Wallowa	Steelhead	OmyWALW	Summer	Interior	*	*	*	*	*	*	*	Х	
Oxbow	Steelhead	OmyOXBO	Summer	Interior	Х	Х	Х	Х	Х	Х	Х	Х	
Sawtooth Fish Hatchery	Steelhead	OmySAWT	Summer	Interior	Х	Х	Х	Х	Х	Х	Х	Х	
Sawtooth Fish Hatchery - East Fork Salmon	Steelhead	OmyEFSW ^d	Summer	Interior	Х	Х	Х	Х	Х	Х	Х	Х	
Sawtooth Fish Hatchery - Squaw Creek	Steelhead	OmySQUW ^e	Summer	Interior	Х	Х	Х	Х	Х	Х	Х	Х	
Pahsimeroi Fish Hatchery	Steelhead	OmyPAHH	Unknown	Interior	Х	Х	Х	Х	Х	Х	Х	Х	
Wallowa	Steelhead	OmyWALL	Summer	Interior	*	Х	Х	Х	Х	Х	Х	Х	
Eastbank Hatchery	Steelhead	OmyEASTBK	Summer	Interior	*	*	*	*	*	*	*	*	
Methow Hatchery (Twisp)	Steelhead	OmyTWP	Summer	Interior	*	*	*	*	*	X	X	X	
Parkdale Fish Facility	Steelhead	OmyPFF	Winter	Coastal	*	*	*	*	X *	X	X	X	
Round Butte Fish Hatchery	Steelhead	OmyRB	Summer	Interior						X	X	X	
Skamania Hatchery (Summer)	Steelhead	OmySKH_su ^t	Summer	Coastal	*	*	*	*	*	Х	Х	Х	
Skamania Hatchery (Winter)	Steelhead	OmySKH_wi ^f	Winter	Coastal	*	*	*	*	*	Х	Х	Х	
Umatilla Fish Hatchery	Steelhead	OmyUMA	Summer	Interior	*	*	*	*	X	Х	Х	Х	
Wells Hatchery	Steelhead	OmyWEL	Summer	Interior	*	*	*	*	*	X	X	X	
Wells Hatchery - Omak stock	Steelhead	OmyWEL_OMA	Summer	Interior	*	*	*	*	*	*	*	X	
Winthrop National Fish Hatchery ^a Chinook Lyons Ferry stock consolidated under 'OtsI	Steelhead	OmyWTP	Summer	Interior	ጥ	ጥ	*	ጥ	Х	Х	Х	Х	

^aChinook Lyons Ferry stock consolidated under 'OtsLYON' starting in 2012 ^bSteelhead Lyons Ferry stock consolidated under 'OmyLYON' starting in 2012

^cSteelhead Lyons Ferry stock discontinued in 2013

^dSteelhead Sawtooth stock consolidated under 'OmySAWT' from 2012-2013 ^eSawtooth stock consolidated under 'OmySAWT' in 2012, renamed 'Upper Salmon B-run (YFLW) and consolidated under 'OmyPAHH' starting in 2013

^fSteelhead Skamania stock is collected late in the calendar year, and is designated for the following broodyear (e.g., late 2012 collections are considered part of BY2013) N/A – Stock discontinued/non-existent

*Broodstock not sampled

1 Discussion

2 Over the course of this project we have compiled extensive data sets of SNP genotypes for Chinook salmon steelhead trout and O. nerka covering diverse regions in the Columbia River 3 4 Basin (including the Snake River Basin). Recently we have added coho salmon to our efforts. Our goal has been to construct SNP reference baselines that will be expanded or updated 5 annually for continued evaluation of these species. This strategy assures the greatest likelihood 6 of discerning reproductively distinct aggregations for each species through time (Waples 1991), 7 8 while monitoring population viability related to demographic trends that occur locally and/or 9 regionally. Philopatry (Ouinn et al. 1991, Hendry et al. 2003) and hatchery supplementation 10 activities (Ford et al. 2006; Hard & Heard 1999) play a major role in how genetic divergence and differentiation is distributed geographically, and it will be important to evaluate these influential 11 factors for potential effects on our ability to differentiate populations, both qualitatively 12 (phenotypes; landscapes) and quantitatively (e.g., genetic stock identification). Our past results 13 have been verified and substantiated through replication and comparisons of published data 14 (Waples et al. 2004; Narum 2008b; Narum et al. 2010b). That work has led to the discovery of 15 outlier loci for adaptive divergence. Our current efforts have expanded on our understanding of 16 17 non-neutral genetic variation among populations for the species of interest (with the exception of coho salmon). The RAD datasets under construction will demonstrate the utility of SNPs to 18 characterize adaptive variation, as was observed in a recent range-wide analysis of Chinook 19 salmon (Hecht et al. 2015). Environmental and climate related variables that are likely to have 20 significant influence on allele frequencies have been identified (e.g., precipitation, temperature 21 maximums and minimums, elevation, etc.) and those data have been recorded for the purposes of 22 23 in-depth testing of landscape associations.

24

25 The continued expansion of SNP panels and updating of baseline that include a more

26 geographically broad set of collections/populations will help us achieve a greater level of

27 resolution, which means greater statistical power to identify population distinctions among the

major tributaries and sub-basins of the Columbia River Basin. The expansion efforts reported
here complement previously reported results, and have provided improved ability to differentiate

stocks on regional and local scales through application of GSI and PBT methods. The application

- of next generation sequencing techniques and resulting datasets demonstrate the ability to yield
- tens of thousands of potential SNPs, and has proven to be informative for identifying population

differences distributed across landscapes (e.g., Narum et al. 2010a; Matala et al. 2011; Hecht et

al. 2015). In our most recent studies, we have identified environmental and climate related

variables (e.g., precipitation, temperature maximums and minimums, elevation, etc.) likely to

have significant influence on allele frequencies among steelhead populations (Micheletti et al. *in*

preparation), and those data have been recorded for the purposes of in-depth testing of landscapeassociations.

39

40 Collections of *O. tshawytscha*, *O. mykiss*, and *O. nerka* have been chosen for baseline expansion

41 based on availability, novelty, and in accordance with our goal of reaching complete coverage of

42 extant stocks within the Columbia River Basin. Priority collections for all three species have

43 been identified as those important to basin-wide harvest and hatchery management, particularly

44 in tribal fisheries. This includes major supplementation stocks for all three species, lower

45 Columbia, ocean-type, and stream-type lineages of Chinook salmon, inland and coastal lineages

- and summer-run and winter-run ecotypes of steelhead trout, and the anadromous (Sockeye 46
- 47 salmon) and land-locked (kokanee) forms of *O. nerka*. Species-specific reference baselines may
- include life history variants such as potentially distinct populations of resident O. mykiss (Narum 48
- 49 et al. 2008a; Narum et al. 2011). The application of GSI in fisheries continues to inform
- managers on several fronts, including: harvest management, abundance estimates, life history 50
- distinctions and conservation needs. Moreover, PBT is being used for multiple purposes 51
- including validation of assigned origins using GSI. In fact, PBT frequently reveals substantial 52
- 53 numbers of unmarked hatchery-origin fish that are incorrectly identified as wild in the field due
- to mis-clipped adipose fins. Future efforts for baseline expansion include compiling marker 54
- 55 "banks" that can be drawn from at any time should the need for more markers be necessary. An
- example of such need is basin-wide coverage to account for stock transfers or reintroductions 56
- throughout the basin (e.g., O. nerka in Cle Elum Lake). 57
- 59 References
- 60

- Ackerman, M., and M. Campbell. 12. Chinook and steelhead genotyping for genetic stock 61 62 identification at lower granite dam. ANNUAL PROGRESS REPORT July 1, 11 - June 30, 12, Submitted to Bonneville Power Administration. Contract # 53239; Project # 10-63 026-00. Available at: 64 65
 - https://pisces.bpa.gov/release/documents/documentviewer.aspx?doc=P128035
- Antao, T., A. Lopes, R. J. Lopes, A. Baja-Pereira and G. Luikart. 08. LOSITAN: A 66 workbench to detect molecular adaptation based on an F_{ST} -outlier method. BMC 67 68 **Bioinformatics 9:323.**
- Baird, N. A., P. d. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A. Lewis, E. U. Selker, W. 69 A. Cresko and E. A. Johnson. 08. Rapid SNP Discovery and Genetic Mapping Using 70 71 Sequenced RAD Markers PLos ONE 3(10): 7 pages.
- Beacham, T. D., K. L. Jensen, J. Supernal, M. Wetly, L. Deng and N. Varnavskava. 06. 72 Pacific rim population structure of Chinook salmon as determined from microsatellite 73 74 analysis. Transactions of the American Fisheries Society 135:1604-1621.
- Benjamini Y., and D. Yekutieli. 01. The control of false discovery rate under dependency. 75 Ann. Stat. 29:1165-1188. 76
- 77 Blankenship, S. M., M. R. Campbell, J. E. Hess, M. A. Hess, T. W. Kassler, C. C. Kozfkay, A. P. Matala, S. R. Narum, M. M. Paquin, M. P. Small, J. J. Stephenson, K. I. Warheit and 78 79 P. Moran. 11. Major Lineages and Metapopulations in Columbia River Oncorhynchus mykiss Are Structured by Dynamic Landscape Features and Environments. T. Am. Fish. 80
- Soc. 140:665–684. 81
- Byrne A., J. Hymer, S. Ellis, R. Dick II, K. Keller, C.A. Steele, J.E. Hess, M. Begay, and Miller 82 T. 15. A genetic analysis of the summer steelhead stock composition in the Columbia 83 River and Snake River tribal and sport fisheries. Idaho Department of Fish and Game, 84 technical report number 15-06. 85
- https://collaboration.idfg.idaho.gov/FisheriesTechnicalReports/Res15-86
- 06Byrne13Genetic%Analysis%Summer%Steelhead%Stock%Columbia-Snake%R.pdf 87
- Campbell, N. R., and S. R. Narum. 08. Identification of novel SNPs in Chinook 88
- 89 salmon and variation among life history types. Transactions of the American Fisheries Society 137:96-106. 90

- Catchen J. M., A. Amores, P. Hohenlohe, W. Cresko, J. H. Postlethwait. 11. Stacks: building
 and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics,
 1, 171–182.
- Currens, K. P., C. B. Schreck and H. W. Li. 09. Evolutionary ecology of redband trout.
 Transactions of the American Fisheries Society 138:797–817.
- Dionne M., F. Caron, J. J. Dodson and L. Bernatchez. 08. Landscape genetics and hierarchical
 genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation.
 Molecular Ecology 17:2382-2396.
- Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package), version 3.5c.
 Department of Genetics, University of Washington, Box 357360, Seattle, WA 98105, USA.
- Ford, M. J., H. Fuss, B. Boelts, E. LaHood, J. Hard and J. Miller. 06. Changes in run timing
 and natural smolt production in a naturally spawning coho salmon (Oncorhynchus
 kisutch) population after 60 years of intensive hatchery supplementation. Canadian
 Journal of Fisheries and Aquatic Sciences 63:2343–2355.
- Fraser, D. J. and L. Bernatchez. 01. Adaptive evolutionary conservation: towards a unified
 concept for defining conservation units. Molecular Ecology 10:2741-2752.
- Fraser, D. J., L. K. Weir, L. Bernatchez, M. M. Hansen and E. B. Taylor. 11. Extent and scale
 of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:404-4.
- Funk, W. C., J. K. McKay, P. A. Hohenlohe and F. W. Allendorf. 12. Harnessing genomics
 for delineating conservation units. Trends in Ecology and Evolution 27(9):489-496.
- Gustafson, R. G., T. C. Wainwright, G. A. Winans, F. W. Waknitz, L. T. Parker, and R. S.
 Waples. 1997. Status review of SOCK salmon from Washington and Oregon. U. S. Dept.
 Commer., NOAA Technical Memorandum MNFS-NWFSC-33, 282 p.
- Hard, J. J., and W. R. Heard. 1999. Analysis of straying variation in Alaskan hatchery
 Chinook salmon (Oncorhynchus tshawytscha) following transplantation. Canadian
 Journal of Fisheries and Aquatic Sciences 56:578-589.
- Hasler, A. D., and A. T. Scholz. 1983. Olfactory imprinting and homing in salmon:
 investigations into the mechanism of imprinting process. Zoophysiology, Volume 14.
 Springer-Verlag, New York.
- Heard, W. R., R. Burkett, F. Thrower, and S. McGee. 1995. A review of Chinook
 salmon resources in Southeast Alaska and development of an enhancement program
 designed for minimal hatchery-wild interaction. American Fisheries Society Symposium
 15:21-37.
- Hecht BC, Campbell NR, Holecek DE, Narum SR. 13. Genome-wide association reveals
 genetic basis for the propensity to migrate in wild populations of rainbow and steelhead
 trout. Molecular Ecology, doi: 10.1111/mec.182.
- Hecht, B. C., A. P. Matala, J. E. Hess, and S. R. Narum. 15. Environmental adaptation in Chinook salmon (Oncorhynchus tshawytscha) throughout their North American range. Molecular ecology, 24(22), 5573-5595.
- Hendry, A. P., V. Castric, M. T. Kinnison, and T. P. Quinn. 03. The evolution of
 philopatry and dispersal: homing vs. straying in salmonids. In Evolution illuminated:
 salmon and their relatives. Edited by A. P. Hendry and S. C. Stearns.
 Oxford Univ. Press, New York, NY. pp. 52-91.
- Hess, J. E. and A. P. Matala. 13. Archival genetic analysis suggests recent immigration has

altered a population of Chinook salmon in an unsupplemented wilderness area. 136 137 Conservation Genetics DOI 10.1007/s10592-013-0546-z. Hess, J. E., N. R. Campbell, A. P. Matala and S. R. Narum. 12. Genetic Assessment of 138 139 Columbia River Stocks. Columbia River Inter-Tribal Fish Commission annual report 11. Project Number: 08-907-00, Contract Number: 41224, Submitted to Bonneville Power 140 Administration, March 31, 12. 141 Hess J.E., N.R. Campbell, A.P. Matala, D.J. Hasselman, and S.R. Narum. 16a. 14 Annual 142 Report: Genetic assessment of Columbia River stocks. U.S. Dept. of Energy Bonneville 143 Power Administration Report Project #08-907-00. 144 https://pisces.bpa.gov/release/documents/DocumentViewer.aspx?doc=P147368 145 Hess M.A., J.E. Hess, A.P. Matala, R.A. French, C.A. Steele, J. Lovtang, and S.R. Narum. 146 16b. Migrating adult steelhead utilize a thermal refuge during summer periods with high 147 water temperatures. ICES Journal of Marine Science, doi:10.1093/icesjms/fsw1 148 http://icesjms.oxfordjournals.org/content/ 149 Iwamoto EM, Myers JM, Gustafson RG. 12. Resurrecting an extinct salmon evolutionarily 150 significant unit: archived scales, historical DNA and implications for restoration. 151 152 Molecular Ecology 21:1567–1582. Jombart, T., & I. Ahmed, 11. adegenet 1.3-1: new tools for the analysis of genome-wide SNP 153 data. Bioinformatics, 27(21), 3070-3071. 154 Landguth, E.L. and N. Balkenhol. 12. Relative sensitivity of neutral versus adaptive genetic 155 data for assessing population differentiation. Conservation Genetics 13(5):1-6. 156 Latch, E. K., W. I. Boarman, A. Walde and R. C. Fleischer. 11. Fine-scale analysis reveals 157 cryptic landscape genetic structure in desert tortoises. PLos ONE 6(11):e27794. 158 Limborg, M. T., S. M. Blankenship, S. F. Young, F. M. Utter, L. W. Seeb, M. H. H. Hansen, and 159 J. E. Seeb. 11. Signatures of natural selection among lineages and habitats 160 161 in Oncorhynchus mykiss. Ecology and Evolution. doi:10.1002/(ISSN)45-7758 Matala, A. P., J. E. Hess and S. R. Narum. 11. Resolving adaptive and demographic 162 divergence among Chinook salmon populations in the Columbia River basin. T. Am. 163 Fish. Soc. 140:783-807. 164 Matala AP, Young W, Vogel JL, Narum SR. 12 Influences of hatchery supplementation, 165 spawner distribution and habitat on genetic structure of Chinook salmon (Oncorhynchus 166 tshawytscha) in the South Fork Salmon River, ID. North American Journal of Fisheries 167 Management, 32, 346–359. 168 Matala, A. P., M. Ackerman, M. Campbell and S. R. Narum. In review. Relative contributions of 169 neutral and non-neutral genetic differentiation to inform conservation of steelhead trout 170 across highly variable landscapes. 171 McIssac, D. O. and T. P. Quinn. 1988. Evidence for a hereditary component in homing behavior 172 of Chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and 173 Aquatic Sciences 45:21-25. 174 Miller, M. R., J. P. Dunham, A. Amores, W. A. Cresko and E. A. Johnson. 07. Rapid and 175 cost-effective polymorphism identification and genotyping using restriction site 176 associated DNA (RAD) markers. Genome Research 17:240-248. 177 Milner, A. M. and R. G. Bailey. 1989. Salmonid colonization of new streams in Glacier 178 Bay National Park, Alaska. Aquaculture and Fisheries Management :179-192. 179 Moen, T., B. Hayes, M. Baranski, P. R. Berg, S. Kjoglum et al., 08. A linkage map of the 180

- 181 Atlantic salmon (Salmo salar) based on EST-derived SNP markers. BMC Genomics 9:
 182 223.
- Moran, P., D. J. Teel, M. A. Banks, T. D. Beacham, M. R. Bellinger, S. M. Blankenship, J. R.
 Candy, J. C. Garza, J. E. Hess, S. R. Narum, L. W. Seeb, W. D. Templin, C. G. Wallace,
 and C. T. Smith. 13.Divergent life-history races do not represent Chinook salmon coastwide: the importance of scale in Quaternary biogeography. Canadian Journal of Fisheries
 and Aquatic Sciences 70:415–435.
- Narum, S. R., M. S. Powell and A. J. Talbot. 04. A distinctive microsatellite locus that
 differentiates ocean-type from stream-type Chinook salmon in the interior Columbia
 River Basin. Transactions of the American Fisheries Society 133:1051-1055
- Narum, S. R. 06. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conservation Genetics 7:783-787.
- Narum, S. R., J. S. Zendt, D. Graves and W. R. Sharp. 08a. Influence of landscape on resident
 and anadromous life history types of Oncorhynchus mykiss. Canadian Journal of
 Fisheries and Aquatic Sciences 65:1013-1023.
- Narum, S. R., T. L. Schultz, D. M. Van Doornik and D. Teel. 08b. Localized genetic structure
 persists in wild populations of Chinook salmon in the John Day River despite gene flow
 from outside sources. Transactions of the American Fisheries Society 137:1650-1656.
- Narum, S. R., N. R. Campbell, C. C. Kozfkay and K. A. Meyer. 10a. Adaptation of redband
 trout in desert and montane environments. Mol. Ecol. doi: 10.1111/j.1365294X.10.04839.x.
- Narum, S. R., J. Hess and A. P. Matala. 10b. Examining Genetic Lineages of Chinook Salmon
 in the Columbia River Basin. Transactions of the American Fisheries Society 139:1465–
 1477.
- Narum, S. R., J. S. Zendt, C. Frederiksen, N. Campbell, A. Matala, and W. Sharp. 11.
 Candidate Genetic Markers Associated with Anadromy in Oncorhynchus mykiss of the
 Klickitat River. T. Am. Fish. Soc. 140(3):843-854.
- Narum, S. R., and J. E. Hess. 11. Comparison of FST outlier tests for SNP loci under
 selection. Molecular Ecology Resources, 11(s1), 184-194.
- 210 Nei, M. 1972. Genetic distance between populations. The American Naturalist 106:283-292.
- Neville, H., D. Isaak, R. Thurow, J. Dunham and B. Rieman. 07. Microsatellite variation
 reveals weak genetic structure and retention of genetic variability in threatened Chinook
 salmon (Oncorhynchus tshawytscha) within a Snake R. watershed. Conservation
 Genetics 8:133-147.
- Nielsen, J. L., G. T. Ruggerone, and C.E. Zimmerman. 13. Adaptive strategies and life cycle
 characteristics in a warming climate: salmon in the Arctic? Environmental Biology of
 Fishes. 96(10-11):1187-1226
- Olsen, J. B., T. D. Beacham, M Wetklo, L. W. Seeb, C. T. Smith, B. G. Flannery and J. K.
 Wenburg. 10. The influence of hydrology and waterway distance on population structure
 of Chinook salmon Oncorhynchus tshawytscha in a large river. Journal of Fish Biology
 76:1128-1148.
- Peakall, R., and P. E. Smouse. 06. GENALEX 6: genetic analysis in Excel. Population
 genetic software for teaching and research. Molecular Ecology Notes. 6, 288-295.
 Program note available from: <u>http://www.blackwell-synergy.com/doi/abs/10.1111/j.1471-</u>
- 225 <u>8286.05.01155.x</u>

226	Pritchard, J., M. Stephens, P. Donnelly. 00. Inference of population structure
227	using multilocus genotype data. Genetics 155:945-959.
228	Quinn, T. P. 1993. A review of homing and straying of wild and hatchery-produced
229	salmon. Fisheries Research 18:29-44.
230	Quinn, T. P., R. S. Nemeth and D. O. McIsaac. 1991. Homing and straying patterns of
231	fall Chinook salmon in the lower Columbia R Transactions of the American Fisheries
232	Society 1:150-156.
233	Raymond, M. and F. Rousset. 1995. GENEPOP (version 1.2): Population genetics
234	software for exact tests and ecumenicism. Journal of Heredity 86:248-249.
235	Segelbacher, G., S. A. Cushman, B. K. Epperson, MJ. Fortin, O. Francois, O. J. Hardy, R.
236	Holderegger, P. Taberlet, L. P. Waits and S. Manel. 10. Applications of landscape
237	genetics in conservation biology: concepts and challenges. Conservation Genetics
238	11 :375-385.
239	Sepulveda-Villet, O. J. and C. A. Stepien. 12. Waterscape genetics of the yellow perch
240	(Perca flavescens): patterns across large connected ecosystems and isolated relict
241	populations. Molecular Ecology (23):5795-5826.
242	Steele C.A., E.C. Anderson, M.W. Ackerman, M.A. Hess, N.R. Campbell, S.R. Narum, and
243	M.R. Campbell. 13. A validation of parentage-based tagging using hatchery steelhead in
244	the Snake River basin. Canadian Journal of Fisheries and Aquatic Sciences, 70: 1046–
245	1054. http://www.nrcresearchpress.com/doi/pdf/10.1139/cjfas-12-0451
246	Steele C.A., M.W. Ackerman, J. McCane, M.R. Campbell, M.A. Hess, N.R. Campbell, and S.R.
247	Narum. 15. Parentage based tagging of Snake River hatchery steelhead and
248	Chinook salmon. RME Technical Report to Bonneville Power Administration. Project
249	10-031-00.
250	https://collaboration.idfg.idaho.gov/FisheriesTechnicalReports/Res16-
251	02Steele15%PBT%Snake%River%Hatchery%Steelhead%and%Chinook%Salmon.pdf
252	Vu N.V., M.W. Ackerman, K.K. Wright, J. McCane, M.R. Campbell, J.E. Hess, and S.R.
253	Narum. 15. 14 Annual Report: Chinook and steelhead genotyping for genetic stock
254	identification at Lower Granite Dam. U.S. Dept. of Energy Bonneville Power
255	Administration Report Project # 10-026-00.
256	https://collaboration.idfg.idaho.gov/FisheriesTechnicalReports/Res15-02Vu14Chinook-
257	Steelhead%Genotyping%for%GSI%at%LGR.pdf
258	Waples, R. S. 1991. Pacific salmon, Oncorhynchus spp., and the definition of "species"
259	under the Endangered Species Act. Marine Fisheries Review 53:11-22.
260	Waples, R. S., D. J. Teel, J. M. Myers, and A. R. Marshall. 04. Life-history divergence
261	in Chinook salmon: historical contingency and parallel evolution. Evolution 58:386-403.
262	
262	

Section 3: Genetic Stock Identification of Chinook Salmon, Sockeye Salmon, and Steelhead Harvest Mixtures in the Mainstem Columbia River

266

267 Introduction

268

269 Genetic Stock Identification (GSI) methods have proven to be effective in determining the proportion of stock origin in mixed stock applications of salmonids (Shaklee et al. 1999, 270 Winans et al. 2004, Beacham et al. 2006, and Beacham et al. 2011). These methods have been 271 demonstrated to be useful even at relatively fine geographic scales within the Columbia River 272 Basin (CRB) (Hess et al. 2011, Hess and Narum 2011, Hess et al. 2014). Within the CRB, 273 Chinook salmon consist of three major genetic lineages and steelhead consist of two major 274 275 genetic lineages that can be further divided into populations that are genetically structured on a finer spatial scale (e.g., Waples et al. 2004; Narum et al. 2010; Blankenship et al. 2011). In this 276 277 study, we used separate groups of SNP markers to discriminate 19 reporting groups for Chinook salmon, 14 reporting groups for steelhead, and four reporting groups for sockeye salmon. 278

Despite continuous improvements of the power of our Chinook salmon and steelhead 279 baselines in GSI applications (Hess et al. 2014), we have determined that further improvement in 280 the detail of data and accuracy of stock assignments could be made by utilizing a recently 281 developed genetic technology (i.e., parentage based tagging (PBT)), in combination with GSI, in 282 a tiered approach for stock identification. PBT is an efficient approach for mass tagging of fish. 283 The method is carried out by first genotyping a set of potential parents which then provides the 284 285 opportunity to assign a set of genotyped offspring to their true parent pair. PBT is currently being utilized on a broad scale in the Columbia River Basin, and was recently (i.e., 2012-present) 286 expanded beyond Snake River hatcheries (Steele et al. 2011) to tag all Chinook salmon and 287 steelhead hatchery broodstock from hatcheries in the CRB above Bonneville Dam. This 288 289 application has effectively tagged all Snake River hatchery Chinook salmon and steelhead starting with the 2008 brood years, and elsewhere in the CRB above Bonneville Dam beginning 290 with the 2012 brood year. When parent pairs of hatchery fish are identified with PBT, we can 291 provide accurate information including age of the fish and the source hatchery in which its 292 293 parents were spawned. We use PBT in this harvest study to identify hatchery-origin fish, and then use GSI to estimate stock-of-origin of all other hatchery fish that were not assigned with 294 PBT and for all natural origin fish. For sockeye salmon, we rely solely on GSI to determine 295 stock of origin since PBT is not necessary to identify stocks. For the 2015 Chinook harvest, all 296 age classes (3-, 4-, and 5-year old fish) can be identified from Snake River stocks using PBT. 297 298 However, because our PBT baseline continues to expand for Columbia River stocks, only 3- and 4-year old fish can currently be identified for certain Columbia River stocks. 299

We continue to employ the genotyping-in-thousands by sequencing (GT-seq) approach that has been developed in our laboratory (Campbell et al. 2015). This approach has increased the cost-effectiveness for genotyping moderate numbers of SNP loci (100s) for relatively large numbers of individuals (1000s), which allows us to run all SNP loci regardless of whether we intend to use primarily PBT analyses or a combination of PBT and GSI. Therefore, we avoid the difficult decisions we have had to make in past years (Hess et al. 2015), in which we needed to consider the primary goal of the project before selecting which panels of SNP markers were required. Not only is the genotyping decision process simplified, but our projects now benefit from the additional data that comes from genotyping with all available markers.

309

Fisheries conducted in the mainstem of the lower and middle Columbia River provide an ideal and important application of genetic stock analyses because the fish harvested consist of mixtures of stocks from a large extent of the CRB. Further, Chinook salmon fisheries in this location represent a majority of the CRB harvest of this species taken by the commercial, sport, and tribal fishermen. In order to help support sustainable fisheries, PBT and GSI can be used to address two primary questions: 1) how are Chinook salmon stocks temporally and spatially distributed in the mainstem Columbia River; and 2) how are these stocks temporally and

- 317 spatially distributed in the harvests of fisheries.
- 318 319
- 320 Project objectives and higher level harvest management questions

Our study had two primary objectives: 1) utilize a combination of PBT and GSI analyses to determine stock composition of Chinook salmon harvested in sport, commercial, and tribal fisheries in the mainstem Columbia River, and 2) utilize GSI to estimate stock composition of sockeye salmon harvested above and below Bonneville Dam in commercial, sport, and tribal fisheries. Results from these objectives were used to address:

326

Harvest RM&E: F&W Program Management Question: What are your in-river monitoring results and what are your estimates of stock composition and stock-specific abundance, escapement, catch, and age distribution?

330

331 Increasingly, we are tailoring our analyses to address specific questions that fisheries managers have presented to us. For example, in 2012 managers proposed extending the 332 geographic boundary of one of the mark selective spring-run Chinook salmon sport fisheries 333 above Bonneville Dam that occurs at the mouth of the Wind River. This extension created a 334 larger "bubble" boundary at the mouth of the Wind River and was intended to increase Columbia 335 River mainstem fishing access while maintaining targeted focus on Wind River spring-run 336 Chinook salmon. For 2012-2014, we examined the stock composition of the Wind River sport 337 harvest and provided context by comparing stock proportions among the various samples from 338 other fisheries and Bonneville Dam that were analyzed that same year. We repeated this analysis 339 for fish harvested in 2015. We include in this report the 3rd year of analysis of sockeye salmon 340 fisheries in the Columbia River mainstem. Differences in relative abundance of the three main 341 stocks (Okanagan, Wenatchee, and Snake) present challenges to managing lower river harvest, 342 because of the desire to harvest the highly abundant Okanagan stock around the much less 343 abundant Snake River stock and moderately abundant Wenatchee River stock. Stock 344 composition estimates are expected to help determine how harvest is impacting these various 345 346 stocks.

348 Time line for completion of objectives

Objectives will be ongoing and PBT/GSI results updated each year for harvest analyses 349 350 of salmonids throughout the accords-funding. As new genetic techniques are developed they will be applied to this project and results will be compared between years to determine the extent 351 of improvements. 352

- 353
- 354 Our study was not designed to address the following question:
- Harvest RM&E: F&W Program Management Question: Can selective fisheries targeting 355 hatchery fish or healthy populations reduce impacts on ESA-listed populations? 356
- 357
- Accuracy testing of PBT and GSI baselines 358

359 Prior to conducting analyses for fisheries harvest collections and mixture samples

- encountered at Bonneville Dam (Section 4), we assessed the accuracy of our PBT and GSI 360
- 361 baselines in assigning fish to their hatchery brood (PBT: Chinook salmon, steelhead) or reporting
- group (GSI: Chinook salmon, sockeye salmon, steelhead) of origin (see Results section). 362
- 363

Methods 364

365

Methods for estimating stock composition are available at 366

- (https://www.monitoringmethods.org/Protocol/Details/229). The Monitoring Methods Protocol 367 is entitled Snake River steelhead and Chinook salmon stock composition estimates (2010-026-368 00) v1.0.
- 369

370

Tissue collection of Chinook salmon, Sockeye salmon, and steelhead 371

Tissues were sampled from Chinook salmon in 2015 from a total of ten different mixture 372 sources: 1) Bonneville Dam (see Section 4), and the spring-run seasons of the following 373 fisheries: 2) lower river commercial, 3) lower river sport, 4) lower river test, 5) Wind R. sport, 6) 374 375 tribal spring, and 7) tribal ceremonial, the summer management period harvests of the following fisheries: 8) lower river commercial and 9) lower river sport, and the fall-run harvest from 10) 376 the lower river mark-selective sport fishery of 2015. Drano Lake samples from the spring sport 377 fishery were not provided to us in 2015. While fisheries generally harvest jack sized Chinook 378 379 salmon at low rates and do not have specific harvest limits on jacks, jacks do comprise part of the harvest and may be sampled if encountered. Jacks are sampled at the Bonneville AFF trap in 380 the proportion that they are encountered in the sampling. Sampling restrictions at the AFF can 381 382 result in biases in the size of fish sampled compared to the run at large. A portion of the spring season Zone 6 tribal harvest was sampled by Megan Begay as part of the Yakama Nation fishery 383 program. Harvest tissues were collected in coordination with existing monitoring programs led 384 by Washington Department of Fish and Wildlife (WDFW) and Oregon Department of Fish and 385 Wildlife (ODFW) and the Yakama Nation. The spring management period Chinook salmon 386 fisheries were sampled below Bonneville Dam in the sport and commercial fishery and tribal 387 388 bank fishery immediately downstream of Bonneville Dam (regions A and B), and sampled above Bonneville Dam in Zone 6as part of the Wind River sport fishery and Yakama Nation Zone 6 389

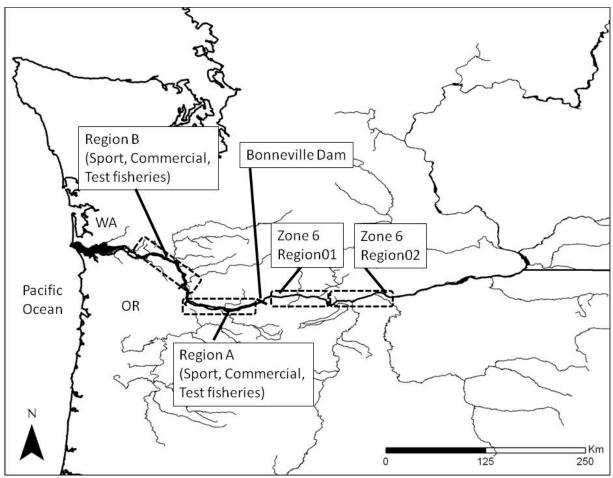
390 fishery (Figure 1; Table 1). The summer management period fisheries were sampled below 391 Bonneville Dam in the sport and commercial fisheries, and above Bonneville Dam in Zone 6 in the tribal commercial fishery. Due to limited funds, we analyzed a subset of samples 392 393 (approximately 50 fish per weekly strata) obtained from the spring and summer Chinook salmon sport and commercial fisheries below Bonneville Dam and the spring season Zone 6 tribal 394 fishery. A subset of samples was analyzed from the spring season sport mark-selective Wind 395 River fishery, due to budgetary constraints. For fisheries in which we had to subsample the 396 397 harvest, we selected fish randomly and with a balanced design across spatial regions. 398 399 Stock proportions were calculated for some groupings within each fishery source, such

that stock proportions could be compared across geographic regions as well as adipose-clipped 400 versus non-adipose-clipped categories for particular fisheries. We use the following four main 401 geographic regions (Figure 1): Region A corresponds to our grouping of pre-existing Oregon and 402 Washington state sport fishing zones 1-4 (or commercial zones 4-5), Region B corresponds to 403 our grouping of sport zones 5-10 (or commercial zones 1-3). Here, we do not discriminate 404 between Region 01 and Region 02 in the Zone 6 fishery, because that information did not 405 accompany the samples we received. These sets of groupings were established for this study in 406 order to achieve balanced sampling for analysis of these fishery datasets, as well as to set an 407 appropriate spatial scale of analysis to minimize variance of our estimates of stock proportions 408 over temporal strata. 409

410

Non-tribal fisheries during the spring management period for Chinook salmon are mark-411 selective based on absence or presence of the adipose fin to distinguish hatchery fish from 412 natural origin fish, respectively. These adipose markings make it possible to have a mark-413 selective sport and commercial fishery in which only fish with missing adipose fins (hatchery-414 origin) are legally retained. Fish with intact adipose fins that are caught in these fisheries are 415 released, but mortality rates are unknown from these releases. In addition to sampling hatchery-416 origin fish from the mark selective commercial and sport fisheries, we were able to obtain 417 418 samples from non-clipped hatchery and natural origin fish from Bonneville Dam and the tribal Zone 6 fishery above Bonneville Dam. 419

420


Tissues were sampled from sockeye salmon in 2015 from four fishery mixture sources: 1) lower river commercial, 2) lower river sport, 3) Bonneville Dam (see Section 4), and 4) the tribal fishery in Zone 6. All samples obtained from these fisheries were analyzed.

- 424
- 425 Molecular data

426 Methods for DNA extraction, DNA amplification, and genotyping of SNP assays using 427 genotyping-in-thousands by sequencing (GT-seq) are available at

- 428 (https://www.monitoringresources.org/Document/Method/Details/5446). Additional details
- regarding how 192 SNPs were reduced to 186 SNPs can be found in Hess et al. (2012, 2013).
- 430 Subsequently, we have reduced our Chinook salmon GSI baseline from 186 SNPs to 179 SNPs,
- 431 because we were unable to transition the full set of 186 SNPs to GT-seq protocols. These 179
- 432 SNP markers were used for GSI, and for PBT analyses, we used 95 of the SNPs. We used 93

433 SNP markers for GSI of sockeye mixtures.

435 Figure 1: Project scope showing sources of Chinook salmon and sockeye salmon harvest

mixtures that were analyzed using PBT/GSI.

438 Table 1: Characteristics of Chinook salmon harvest samples by fishery, region, life history stage, and origin by weekly strata.

																				Statis								-							
Run		Harvest				Genotyped		, ,				nagem					1			ner M					1				l Mana					1	
Туре	Region	Region	Stage	Origin	(N)		11 12	13	14				8 19	9 20	21	22	23	24 2	5 20	5 27	28	29	30	31 3	2 3	3 3	34 35	36	, 37	38	39	40	41	42 4	43
			Adult	Hatchery	299	82					41					_													<u> </u>	\mid	\vdash	$\mid \mid \mid$	⊢		
	Tribal Ceremonial	Zone 6		Wild	67	18					9	9				_													<u> </u>	\mid	\vdash	$\mid \mid \mid$	⊢		
-			Jack	Wild	1	0									_													_		+	\vdash	\vdash			
			Adult	Hatchery	1910	300									32			23 2										_		+	\vdash	\vdash			
	Tribal	Zone 6		Wild	1473	250								16						7 34		12	33					_	<u> </u>	+-+	\vdash	\vdash	i		
			Jack	Hatchery	41	41								3					3 3			4								\vdash	\square	$\mid \mid \mid$	⊢		
-				Wild	17	17									3				1 3	3 1	3	2	3							\square	\square	\square	 		
			Adult	Hatchery	699	349			50	49			50	0 50)	50	50	50												\vdash	\square	$\mid \mid \mid$	⊢		
		Region A		Wild	2	1				1																				\square	\square	\square	 		
	Lower River		Jack	Hatchery	121	73				1				9 23																\square	\square	\square	⊢		
	Commercial		Adult	Hatchery	841	348			50	50			50	0 50)	50	50	48												\square	\square	\square	 		
Spring		Region B		Wild	2	1												1													\square	$\mid = \mid$			
			Jack	Hatchery	91	79							50	0 29)																\square	\mid			
			Adult	Hatchery	278	208		21		47			4 14																		\square	$\mid = \mid$			
	Lower River Test			Wild	37	29		1	2	3	8	3	6 (6																	\square	\mid			
	Fishery	Region B	Jack	Hatchery	14	13				1	1	5		3 1	. 1														<u> </u>		\square		ı – – –		
				Wild	3	3						1	1	2															<u> </u>		\square		ı – – –		
_			Unknown	Wild	2	0																							<u> </u>		\square		ı – – –		
		Region A	Adult	Hatchery	850	460	22	41	50	50	50			0 15			27	37										_		$\downarrow \downarrow$	\square	\parallel	\vdash		
	Lower River Sport		Jack	Hatchery	86	69								2 16			<u> </u>													$\downarrow \downarrow$	\square	$\mid \downarrow \downarrow$	\vdash		
		Region B	Adult	Hatchery	1188		41 38	50	50	50	50		8 50		' 14	8	14	13										_		$\downarrow \downarrow$	\square	\parallel	\vdash		
ļ			Jack	Hatchery	56	27							2 1																<u> </u>	\square	\square	\square			
	Wind River Sport	Zone 6	Adult	Hatchery	209	69					2	19 3	8 10	0	_													_		\downarrow	\square	$\mid $	\vdash		
		20110-0	Jack	Hatchery	5	0																											<u> </u>		
			Adult	Hatchery	143	55												2	4		17		14						_						
		Region A	Addit	Wild	244	95												2	6		33		36						_						
	Lower River		Jack	Wild	4	4													1		1		2						_						
	Commercial		Adult	Hatchery	232	62												2	8		22		12												
		Region B	Addit	Wild	189	64												2	2		28		14												
		Region D	Jack	Hatchery	6	6													4		2														
			Jack	Wild	5	5													3		2														
			Adult	Hatchery	72	71												2	2 32	2 10	2	5													
ummer		Region A	Addit	Wild	16	12															5	7													
		Region A	Jack	Hatchery	9	9													3 4	4 1		1													
			Jack	Wild	3	3																1		2											
	Sport		Adult	Hatchery	145	110												1	8 29	3 31	2	30													
	Sport		Auun	Wild	41	27															7	20													
		Region B	Jack	Hatchery	11	11													3	3		3	2										i L		
			Jack	Wild	1	1																1													
			Mini-jack	Hatchery	4	0																													
		Zone 6	Adult	Hatchery	1	0																													
			۸ dul+	Hatchery	815	94																			1	1 1	.1 14	14	ł	14	17	9	4		
			Adult	Wild	663	100																			1	3 1	.3 11	. 10	,	10	8	15	20		_
		Region A	Jack	Hatchery	36	36																				3	4 21	. 2	,		5	1	L		
			Jack	Wild	14	14																				3	1				3	3	4		_
			Mini-jack	Hatchery	3	0																										Ţ	Ĺ		_
	Commercial		Adult	Hatchery	135	22																										9	4	4	5
			Auuit	Wild	590	74																										15	20	20 1	19
		Region P	Jack	Hatchery	52	52																										18			1(
		Region B	Jack	Wild	174	174																										27	68	16 6	63
			Mini inclu	Hatchery	3	0																													_
Eall			Mini-jack	Wild	8	0																													
Fall			۸ dul+	Hatchery	239	77																						15	5 15	16	16	15			_
			Adult	Wild	867	0																													
		Dogion A	la al c	Hatchery	30	30																					1	. 2	2 1	6	5	7	2	1	1
		Region A	Jack	Wild	75	75	1																				1						21		
			N / : !!	Hatchery	1	0	1																						1				1		
	Sport		Mini-jack	Wild	6	0	1																						1				1		
			٨٩٠٠١٠	Hatchery	410	77																				1	6 16	16	5 16	13					
			Adult	Wild	823	0																													
				Hatchery	21	21									Τ										1	1	1 5	6 4	1 8		1		1		
		Region B	la ali	riacencry																										·				- 1	
		Region B	Jack	Wild	20	20																				1	3	6	5 1			1	4	4	

439 Note: Mini- jack (<399mm TL); Jack (400-620 mm TL); Adult (≥ 621 mm TL)

440 GSI baselines for Chinook salmon, sockeye salmon, and steelhead

- 441 Chinook salmon GSI analyses were performed using the updated baseline referred to as 442 443 "Columbia River Basin Chinook salmon GSI baseline version 3.1" and is available on the FishGen website (https://www.fishgen.net). This baseline consists of 61 collections that are 444 delineated into the following 19 reporting groups: Columbia Rogue "01_YOUNGS", West 445 446 Cascade spring-run "02_WCASSP", West Cascade fall-run "03_WCASFA", Willamette River 447 spring-run "04_WILLAM", Spring Creek Group Tule fall-run "05_SPCRTU", Klickitat River spring-run "06_KLICKR", Deschutes River spring-run "07_DESCSP", John Day River spring-448 449 run "08 JOHNDR", Yakima River spring-run "09 YAKIMA", upper Columbia River springrun "10_UCOLSP", Tucannon River spring-run "11_TUCANO", Hells Canyon spring-run 450 "12_HELLSC", South Fork Salmon River spring-run "13_SFSALM", Chamberlain Creek 451 spring-run "14 CHMBLN", Middle Fork Salmon River spring-run "15 MFSALM", upper 452 Salmon River spring-run "16_UPSALM", Deschutes River fall-run "17_DESCFA", upper 453 Columbia River summer-/fall-run "18_UCOLSF", and Snake River fall-run "19_SRFALL" 454 455 (Table 2; Figure 2). Reporting groups were primarily determined by the relative genetic similarity among populations according to a phylogenetic analysis, and our previous results 456 demonstrate sufficient power to discern three reporting groups (17_DESCFA, 18_UCOLSF, and 457 19_SRFALL) among the interior ocean-type collections. In one year, we had grouped all interior 458 ocean-type collections into a single reporting group "Interior_Columbia_R_su/fa" (Hess et al. 459 2013). Genetic distances were computed from allele frequencies based on Nei's (1972) genetic 460 distance, with the PHYLIP v 3.69 (Felsenstein 1989) and 1000 bootstrap replicates were 461 performed. Distances were clustered using the Neighbor - Joining method (Saitou and Nei, 462 1987), and a consensus tree was constructed (http://evolution.genetics.washington.edu/phylip/) 463 (Figure 3). 464
- 465

The 10 UCOLSP reporting group includes the following Bonneville pool hatchery stocks: 466 Carson stock (Ots22), and Little White Salmon R. (Ots23) because they are genetically 467 468 indistinguishable from Upper Columbia R. spring Chinook salmon (includes Walla Walla and Umatilla River stocks). This composite group is notable because inclusion of these Bonneville 469 pool stocks explains why a large proportion of fish from the Wind R. sport fishery should assign 470 to this 10 UCOLSP reporting group. The 01 YOUNGS reporting group represents an out-of-basin 471 genetic stock (originating from the Rogue R., OR) that is reared within the Columbia R. at 472 Youngs Bay. Basic OAOC was performed to remove duplicate individuals and strays from the 473 reference populations in the baseline. The baseline and reporting group data is available on 474 FishGen. 475

476

Sockeye salmon GSI analyses utilized the baseline described in Hess et al. (2013), and
has previously been shown to accurately discriminate among the three major stocks in the
Columbia River: Wenatchee, Okanagan, and Snake River sockeye salmon. Here, we refer to this
as "Sockeye GSI baseline v1.0". The transition to GT-seq required omission of several loci due
to poor genotyping quality with the new protocols. A total of 90 SNPs was used for these
analyses.

484	For steelhead, we used GSI baseline version 3.3 that comprises 116 collections from
485	throughout the Columbia River basin that are partitioned into the following 14 reporting groups:
486	01_WCOAST (Quinault River), 02_LOWCOL (lower Columbia River), 03_SKAMAN
487	(Skamania hatchery releases at three sites in lower Columbia River, Willamette River, and
488	Klickitat River), 04_ WILLAM (Willamette River), 05_BWSALM (Big White Salmon River),
489	06_KLICKR (Klickitat River), 07_MGILCS (middle Columbia River, Grande Ronde River,
490	Imnaha River, lower Snake River, lower Clearwater River, and lower Salmon River),
491	08_YAKIMA (Yakima River), 09_UPPCOL (upper Columbia River), 10_SFCLWR (South Fork
492	Clearwater River), 11_UPCLWR (upper Clearwater River), 12_SFSALM (South Fork Salmon
493	River), 13_MFSALM (Middle Fork Salmon River), and 14_UPSALM (upper Salmon River)
494	(see Table 11; Figure 4). Genetic distances were computed from allele frequencies based on
495	Nei's (1972) genetic distance, with the PHYLIP v 3.69 (Felsenstein 1989) and 1000 bootstrap
496	replicates were performed. Distances were clustered using the Neighbor – Joining method
497	(Saitou and Nei, 1987), and a consensus tree was constructed
498	(<u>http://evolution.genetics.washington.edu/phylip/</u>) (Figure 5).
499	
500	
501	Combined application of PBT and GSI
502	We combined PBT and GSI results together by first accepting all confident PBT
503	assignments (i.e., LOD>14 & FDR<0.01) to hatchery broodstock for Chinook salmon (See
504	methods for Parentage assignments using SNPPIT software v1.0, ID: 1341). For the remaining
505	individuals, we used the best estimate of GSI assignments (probability of assignment ≥ 0.80)
506	provided by the program ONCOR to determine likely reporting group of origin (Method:
507	Assigning individual samples using Individual Assignment (IA) genetic methods v1.0, ID:
508	1334). For the assignment of sockeye, GSI via ONCOR was used. For Chinook salmon, all age
509	classes (3-, 4-, and 5-year old fish) can be identified from Snake River stocks using PBT.
510	However, because our PBT baseline continues to expand for Columbia River stocks, only 3- and
511	4-year old fish can currently be identified for certain Columbia River stocks.
512	Results
513	
514	We first present results from our assessment of PBT and GSI baseline accuracy, and then
515	address results from the assignment of the 2015 harvest samples.
-	
516	

- 517 Accuracy testing of the PBT baseline
- 518 *Chinook (94 SNPs)*

To test the accuracy of the Chinook salmon PBT baseline (94 SNPs) in assigning known samples to their hatchery brood of origin, we selected six hatchery collections from 2015 and converted them to unknown samples. These hatchery collections represented four interior stream type lineages (i.e., Klickitat Hatchery, McCall Hatchery (South Fork Salmon stock), Carson National Fish Hatchery, and Round Butte Hatchery) and two interior ocean type lineages (i.e., Lyons Ferry Hatchery and Nez Perce Tribal Hatchery). These collections were chosen because of

525 Table 2: Sample sizes and reporting groups of Chinook salmon baseline populations. Lineages: ST (stream type), OT (ocean type), LC (Lower

526 Columbia).

ID	Collection	(n)	Lineage	Reporting Groups	Reporting Group description
OTS01	Youngs Bay fall-run	91	Rogue	01_YOUNGS	Youngs Bay- Columbia Rogue stock
OTS02	Cowlitz R spring-run	90	LC	02_WCASSP	West Cascade spring-run
OTS03	Kalama R spring-run	83	LC	02_WCASSP	West Cascade spring-run
OTS04	Cowlitz R fall-run	82	LC	03_WCASFA	West Cascade fall-run
OTS05	Elochoman R fall-run	86	LC	03_WCASFA	West Cascade fall-run
OTS06	Lewis R fall-run	93	LC	03_WCASFA	West Cascade fall-run
OTS07	NF Lewis fall-run	178	LC	03_WCASFA	West Cascade fall-run
OTS08	Sandy R fall-run	83	LC	03_WCASFA	West Cascade fall-run
OTS09	McKenzie R spring-run	78	LC	04_WILLAM	Willamette River spring-run
OTS10	N Santiam R spring-run	79	LC	04_WILLAM	Willamette River spring-run
OTS11	Sandy R spring-run	48	LC	04_WILLAM	Willamette River spring-run
OTS12	White Salmon fall-run	77	LC	05_SPCRTU	Spring Creek tule fall-run
OTS13	Spring Creek NFH tule fall-run	49	LC	05_SPCRTU	Spring Creek tule fall-run
OTS14	Klickitat R spring-run	84	ST	06_KLICKR	Klickitat River spring-run
OTS15	Shitike R spring-run	93	ST	07_DESCSP	Deschutes River spring-run
OTS16	Warm Springs R spring-run	90	ST	07_DESCSP	Deschutes River spring-run
OTS17	John Day R spring-run	78	ST	08_JOHNDR	John Day River spring-run
OTS18	Middle Fork John Day R spring-run	47	ST	08_JOHNDR	John Day River spring-run
OTS19	North Fork John Day R spring-run	42	ST	08_JOHNDR	John Day River spring-run
OTS20	American R spring-run	76	ST	09_YAKIMA	Yakima River spring-run
OTS21	Cle-Elum spring-run	88	ST	09_YAKIMA	Yakima River spring-run
OTS22	Winthrop NFH spring-run	82	ST	10_UCOLSP	upper Columbia River spring-run/ Carson Hatchery spring-r
OTS23	little White Salmon R spring-run	93	ST	10_UCOLSP	upper Columbia River spring-run/ Carson Hatchery spring-r
OTS24	Wenatchee R spring-run	109	ST	10_UCOLSP	upper Columbia River spring-run/ Carson Hatchery spring-r
OTS25	Entiat R spring-run	98	ST	10_UCOLSP	upper Columbia River spring-run/ Carson Hatchery spring-r
OTS26	Tucannon R spring-run	81	ST	11_TUCANO	Tucannon River spring-run
OTS27	Wenaha R spring-run	179	ST	12_HELLSC	Hells Canyon spring-run
OTS28	Lostine R spring-run	212	ST	12_HELLSC	Hells Canyon spring-run
OTS29	Grande Ronde R spring-run	314	ST	12_HELLSC	Hells Canyon spring-run
OTS30	Imnaha R spring-run	96	ST	12_HELLSC	Hells Canyon spring-run
OTS31	Lolo Cr spring-run	89	ST	12_HELLSC	Hells Canyon spring-run
OTS32	Red R spring-run	221	ST	12_HELLSC	Hells Canyon spring-run
OTS33	Powell R spring-run	56	ST	12_HELLSC	Hells Canyon spring-run
OTS34	Red R weir spring-run	91	ST	12_HELLSC	Hells Canyon spring-run
OTS35	South Forth Salmon R spring-run	139	ST	13_SFSALM	South Fork Salmon River spring/summer-run
OTS36	Johnson Cr spring-run	137	ST	13_SFSALM	South Fork Salmon River spring/summer-run
OTS37	Secesh R spring-run	252	ST	13_SFSALM	South Fork Salmon River spring/summer-run
OTS38	Chamberlain Cr spring-run	219	ST	14_CHMBLN	Chamberlain Creek spring/summer-run
OTS39	Big Cr spring-run	139	ST	15_MFSALM	Middle Fork Salmon River spring/summer-run
OTS40	Camas Cr spring-run	55	ST	15_MFSALM	Middle Fork Salmon River spring/summer-run
OTS41	Loon Cr spring-run	107	ST	15_MFSALM	Middle Fork Salmon River spring/summer-run
OTS42	Sulphur Cr spring-run	94	ST	15_MFSALM	Middle Fork Salmon River spring/summer-run
OTS43	Bear Valley Cr spring-run	135	ST	15_MFSALM	Middle Fork Salmon River spring/summer-run
OTS44	Capehorn Cr spring-run	214	ST	15_MFSALM	Middle Fork Salmon River spring/summer-run
OTS45	Marsh Cr spring-run	228	ST	15_MFSALM	Middle Fork Salmon River spring/summer-run
OTS46	North Fork Salmon R spring-run	55	ST	 16_UPSALM	upper Salmon River spring/summer-run
OTS47	Lemhi R spring-run	96	ST		upper Salmon River spring/summer-run
OTS48	Pahsimeroi R spring-run	92	ST	16_UPSALM	upper Salmon River spring/summer-run
OTS49	East Fork Salmon R spring-run	286	ST	 16_UPSALM	upper Salmon River spring/summer-run
OTS50	Salmon R spring-run	83	ST		upper Salmon River spring/summer-run
OTS51	West Fork Yankee Fork spring-run	75	ST	16_UPSALM	upper Salmon River spring/summer-run
OTS52	Valley Cr spring-run	100	ST	16_UPSALM	upper Salmon River spring/summer-run
OTS53	Sawtooth Hatchery weir spring-run	186	ST	16_UPSALM	upper Salmon River spring/summer-run
OTS54	upper Deschutes R fall-run	252	OT	17_DESCFA	Deschutes River fall-run
OTS55	lower Yakima R fall-run	62	OT	18_UCOLSF	upper Columbia River summer/fall-run
OTS56	Hanford Reach fall-run	93	OT	18_UCOLSF	upper Columbia River summer/fall-run
OTS57	Wenatchee R summer-run	92	OT	18_UCOLSF	upper Columbia River summer/fall-run
OTS58	Entiat R summer-run	51	OT	18_UCOLSF	upper Columbia River summer/fall-run
OTS59	Methow R summer-run	87	OT	18_UCOLSF	upper Columbia River summer/fall-run
OTS60	Lyons Ferry weir fall-run	90	OT	19_SRFALL	Snake River fall-run
	,	~ ~		· _ · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

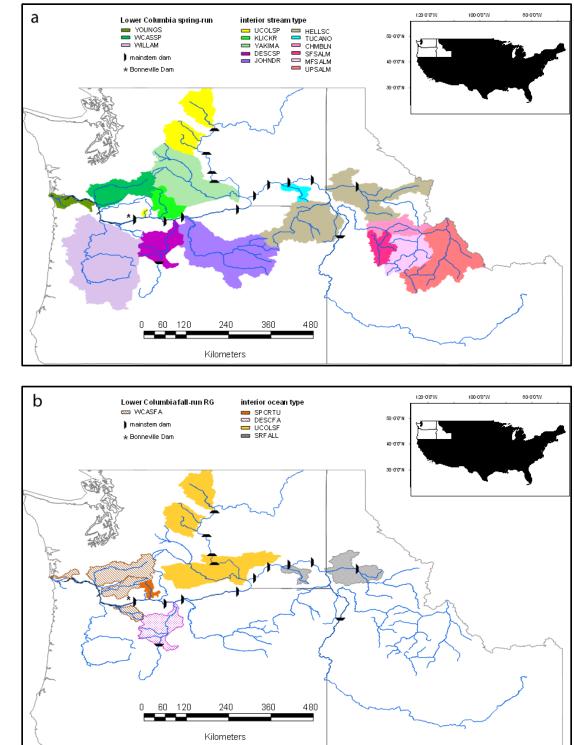
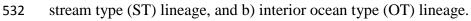
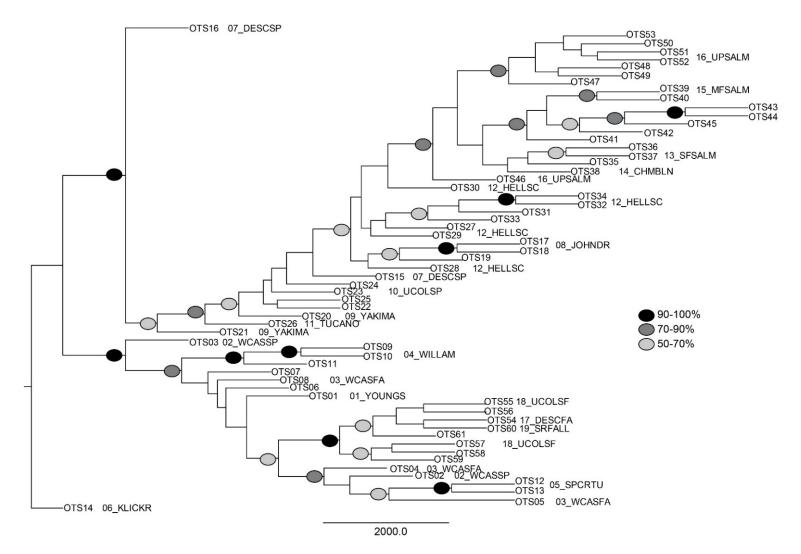




Figure 2: Map of Chinook salmon GSI reporting groups for a) Lower Columbia (LC) and interior

- 534
- 535 Figure 3: Neighbor-joining tree of Chinook salmon baseline populations using Nei's 1972 genetic distance of 179 SNP loci. The
- clusters are labeled with names of reporting groups used to aggregate the collections based on a combination of factors including
- 537 genetic similarity, life history, and geographic proximity. Bootstrap support is shown with shaded ovals (Source: Hess et al. 2015).

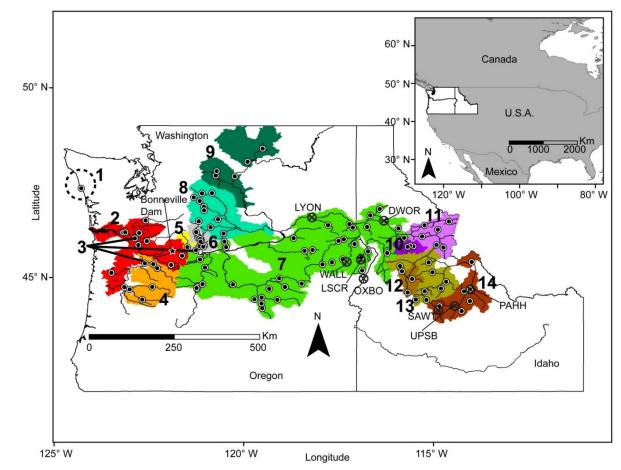
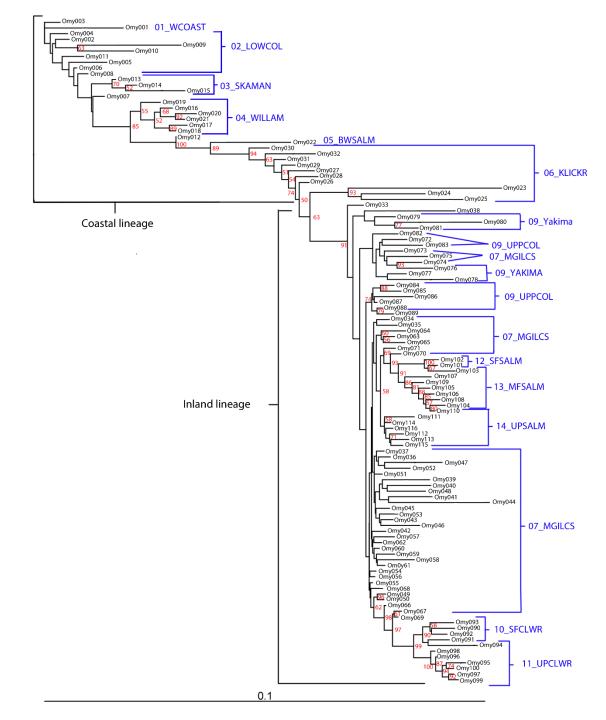



Figure 4: Geographic distribution of collections represented in the Columbia River steelhead GSI 540 and PBT genetic baselines. The shape overlay represents the geographic extent of the following 541 14 reporting groups in the GSI baseline: 1) Quinault (WCOAST), 2) lower Columbia River 542 (LOWCOL), 3) Skamania hatchery releases at three sites in lower Columbia River, Willamette 543 River, and Klickitat River (SKAMAN), 4) Willamette River (WILLAM), 5) Big White Salmon 544 River (BWSALM), 6) Klickitat River (KLICKR), 7) middle Columbia River, Grande Ronde 545 River, Imnaha River, lower Snake River, lower Clearwater River, and lower Salmon River 546 (MGILCS), 8) Yakima River (YAKIMA), 9) upper Columbia River (UPPCOL), 10) South Fork 547 Clearwater River (SFCLWR), 11) upper Clearwater River (UPCLWR), 12) South Fork Salmon 548 549 River (SFSALM), 13) Middle Fork Salmon River (MFSALM), and 14) upper Salmon River (UPSALM). There are 116 collections (filled circles) categorized into reporting groups. The 550 551 PBT baseline is indicated as 8 stocks (crossed circles) corresponding to the following sites where fish are collected and spawned for broodstock: Lyons Ferry Hatchery (LYON), Wallowa 552 553 (WALL), Little Sheep Creek (LSCR), Oxbow Hatchery (OXBO), Dworshak Hatchery (DWOR), upper Salmon River B-run (UPSB), Sawtooth Hatchery (SAWT), and Pahsimeroi Hatchery 554 (PAHH). Bonneville Dam (star) is the site where fish were non-lethally sampled for the mixed-555

stock analysis.

538

557

Figure 5: Neighbor-joining tree of steelhead baseline populations in GSI baseline v.3.3 (186

SNPs) using Nei's 1972 genetic distance. Bootstrap values (in red) ≥50% (based on 1000

bootstraps) are shown. Reporting group names (in blue) are provided and are clustered bylineage (i.e, coastal or inland).

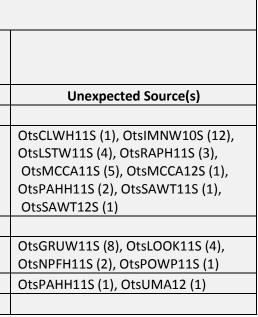
562 the availability of PBT baselines in previous years that these samples could be assigned to parents (Table 3). For the interior stream type lineage from the Klickitat State Fish Hatchery and 563 the McCall Fish Hatchery, we have PBT baselines that extend as far back as 2008 that allow us 564 to assign fish from age classes 3, 4 and 5. However, for the interior stream type lineage from the 565 566 Carson National Fish Hatchery and the Round Butte Fish Hatchery, our baselines extend to 2012 and only permit the assignment of jacks (i.e., age class 3). For the interior ocean type lineage 567 from the Lyons Ferry Fish Hatchery and Nez Perce Tribal Fish Hatchery, our baselines extend to 568 2011 and permit the assignment of fish from age classes 3- and 4-, but not 5-year-old fish. After 569 converting 2015 hatchery returns at each of these facilities to unknown samples, we conducted 570 PBT assignments using brood years 2010-2012 for all hatcheries throughout the Columbia River 571 basin that are represented in our PBT baseline with SNPPIT (See methods for Parentage 572 assignments using SNPPIT software v1.0, ID: 1341). The expectation was that hatchery origin fish 573 574 returning to each facility should assign to parent broodstock in the previous generation from the 575 same hatchery. As described above, not all age classes were represented in PBT baselines for each program so we expected missing assignments for certain stocks. Even when all age classes 576 are available, tagging rates may be lower than 100% that would also result in unassigned 577 offspring. Further, some hatchery programs integrate natural origin fish, so these fish would also 578 579 not be expected to assign to parent broodstock in the previous generation. Given that some offspring did not have true parents in the PBT baseline, this approach allowed us to test for false 580 positive assignments in addition to broodstock assignment accuracy. Only those individuals that 581 had a LOD-score \geq 14 and a False Discovery Rate (FDR) \leq 0.01 were considered to be 582 successfully 'assigned', while all others were considered 'unassigned'. 583

584 *Carson National Fish Hatchery & Round Butte Hatchery:*

Since the PBT baseline for these hatcheries only extended to BY2012 and offspring from 585 2015 were tested, we only expected to assign 3-year old fish to parents. Of the offspring tested, 586 587 only 4% of the Carson samples from 2015 and 12% of the Round Butte samples from 2015 were successfully assigned. This reflects the limited baseline currently available for these hatcheries 588 programs (i.e., 2012-present) but will improve in the future as more age classes are represented. 589 Of those jacks that were assigned, 100% of the Carson fish and 73% of the Round Butte fish 590 assigned to their expected broodstock (i.e. OtsCAR12S and OtsRB12S, respectively). 591 Unexpected broodstock origins for Round Butte included assignments to multiple hatcheries 592 from the Snake River (Table 4). Chinook from the Snake River are known to stray into the 593 594 Deschutes River, and it is likely that some of these strays have been incorporated into the Round 595 Butte Hatchery program (i.e., these are not mis-assignments). This will be tested further with 596 additional years of returns, but initial data suggests that there were little to no false positive assignments. 597

Table 3: Chinook PBT baselines throughout the Columbia River basin. Chinook hatchery programs are shown, along with run type, lineage and years of availability.

Tissues genotyped using 96 SNPs (X) and 298 SNPs (X) are shown, and collections for which data are not yet available are denoted in red (i.e., X).


							Ye	ear			
Hatchery	Code	Run type	Lineage	2008	2009	2010	2011	2012	2013	2014	2015
Clearwater Fish Hatchery	OtsCLWH	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х
Clearwater Fish Hatchery - Powell Facility	OtsPOWP	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х
Dworshak National Fish Hatchery	OtsDWOR	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х
Lookingglass Fish Hatchery - Catherine Creek	OtsCTHW	Spring/Summer	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х
Lookingglass Fish Hatchery - Grande Ronde	OtsGRUW	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х
Lookingglass Fish Hatchery - Imnaha River	OtsIMNW	Spring/Summer	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х
Lookingglass Fish Hatchery - Lookingglass Creek	OtsLOOK	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х
Lookingglass Fish Hatchery - Lostine River	OtsLSTW	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	Х
Lyons Ferry Fish Hatchery	OtsLYON	Spring	Interior stream type	*	*	*	*	Х	Х	Х	Х
Lyons Ferry Fish Hatchery - Tucannon River	OtsTUCW ^a	Spring	Interior stream type	Х	х	Х	х	х	х	Х	X
Lyons Ferry Fish Hatchery	OtsLYON 1	Fall	Interior ocean type	*	*	*	X	X	X	X	X
McCall Fish Hatchery - Johnson Creek	OtsJHNW	Spring/Summer	Interior stream type	Х	Х	Х	X	X	X	X	X
McCall Fish Hatchery - South Fork Salmon	OtsMCCA	Spring	Interior stream type	X	X	X	X	X	X	X	X
Nez Perce Tribal Fish Hatchery (Fall)	OtsNPFH 1	Fall	Interior ocean type	*	*	*	X	X	X	X	X
Nez Perce Tribal Fish Hatchery (Spring)	OtsNPFH	Spring	Interior stream type	х	х	x	X	X	X	X	X
Pahsimeroi Fish Hatchery	OtsPAHH	Spring	Interior stream type	X	X	X	X	X	X	X	X
Rapid River Fish Hatchery	OtsRAPH	Spring	Interior stream type	X	X	X	X	X	X	X	X
Sawtooth Fish Hatchery	OtsSAWT	Spring	Interior stream type	X	X	X	X	X	X	X	X
Big Creek Hatchery	OtsBIG	Fall	Interior ocean type	*	*	*	*	*	*	*	X
Carson National Fish Hatchery	OtsCAR	Spring	Interior stream type	*	*	*	*	Х	Х	Х	X
Chief Joseph Hatchery (Spring)	OtsCJH_sp	Spring	Interior stream type	*	*	*	*	*	*	X	X
Chief Joseph Hatchery (Summer/Fall)	OtsCJH sufa	Summer	Interior ocean type	*	*	*	*		Х	X	X
Cowlitz Salmon	OtsCOW	Spring	Interior stream type	*	*	*	*	*	*	*	*
Eastbank Fish Hatchery	OtsEASTBK	Summer	Interior ocean type	*	*	*	*	Х	*	*	*
Entiat National Fish Hatchery	OtsENFH	Summer	Interior ocean type	*	*	*	*	*	Х	Х	X
Kalama Falls	OtsKAL	Spring	Interior stream type	*	*	*	*	*	*	*	*
Klickitat State Fish Hatchery	OtsKH	Spring	Interior stream type	Х	Х	Х	Х	Х	Х	Х	X
Leavenworth National Fish Hatchery	OtsLNFH	Spring	Interior stream type	*	*	*	*	*	X	X	X
Lewis River	OtsLEW	Spring	Interior stream type	*	*	*	*	*	*	*	*
Little White Salmon National Fish Hatchery (Fall)	OtsLWS sufa	Fall	Interior ocean type	*	*	*	*	*	Х	Х	X
Little White Salmon National Fish Hatchery (Spring)	OtsLWS_sp	Spring	Interior stream type	*	*	*	*	*	X	X	X
Methow State Fish Hatchery	OtsMETH	Spring	Interior stream type	*	*	*	*	Х	X	X	X
Parkdale Fish Facility	OtsPFF	Spring	Interior stream type	*	*	*	*	X	X	X	X
Priest Rapids Hatchery	OtsPRH	Fall	Interior ocean type	*	*	*	*	X	X	X	X
Round Butte Fish Hatchery	OtsRB	Spring	Interior stream type	*	*	*	*	X	X	X	X
Spring Creek NFH	OtsSPCR	Fall	Interior ocean type	*	*	*	*	*	*	*	X
Toutle	OtsTOU	Fall	Interior ocean type	*	*	*	*	*	*	*	*
Umatilla Fish Hatchery (Fall)	OtsUMA sufa	Fall	Interior ocean type	*	*	*	*	Х	Х	Х	
Umatilla Fish Hatchery (Spring)	OtsUMA_sp	Spring	Interior stream type	*	*	*	*	X	X	X	X
Washougal	OtsUNA_sp OtsWAS	Fall	Interior ocean type	*	*	*	*	*	*	*	*
Washougan Warm Springs National Fish Hatchery	OtsWSNFH	Spring	Interior stream type	*	*	*	*	Х	Х	Х	X
Wells Fish Hatchery	OtsWELLS	Summer	Interior ocean type	*	*	*	*	X	X	X	X
Winthrop National Fish Hatchery	OtsWELLS	Spring	Interior stream type	*	*	*	*	*	X	X	X
Yakima Nation Prosser Hatchery	OtsPRO	Fall	Interior ocean type	*	*	*	*	х	X	×	X
Yakima River Roza Dam-Integrated	OtsPRO	Spring	Interior stream type	*	*	*	*	X	×	X	X
Yakima River Roza Dam-Integrated	OtsYRint	Spring	Interior stream type	*	*	*	*	X	*	×	X

^aChinook Lyons Ferry stock consolidated under 'OtsLYON' starting in 2012 *Broodstock not sampled

Table 4: Results of the accuracy testing for the Chinook salmon PBT baseline. Collections and their respective lineage are shown along with the PBT baselines available for their assignment. The total number and percentage of successful assignments at two assignment criteria (i.e., $LOD \ge 14 \& FDR \le 3.0$; $LOD \ge 14 \& FDR \le 0.010$) are shown. The number that assigned to their expected brood stock are displayed, as

605 well as the number of unexpected assignments and their sources.

						LOD≥14,	FDR≤ 3.0				LOD≥14,	FDR≤ 0.010
		PBT Ba	aselines a	available		Total	Percent	Total	Percent	E>	signed to kpected bodstock	Assigned to Unexpected Broodstock
Collection	Lineage	2010	2011	2012	Samples	Assignments	assigned	Assignments	assigned	N	Proportion	N
Carson 2015	Interior stream type			Х	986	40	4.1%	35	3.5%	35	1.0000	0
Round Butte 2015	Interior stream type			x	888	129	15%	110	12%	80	0.7273	30
Klickitat 2015	Interior stream type	Х	Х	Х	427	299	70%	297	70%	297	1.0000	0
McCall 2015	Interior stream type	x	х	х	1180	1120	95%	1115	94%	1100	0.9865	15
Lyons Ferry 2015	Interior ocean type		Х	Х	1773	993	56%	643	36%	641	0.9969	2
Nez Perce 2015	Interior ocean type		Х	Х	822	445	54%	279	34%	279	1.0000	0

606 *Klickitat Hatchery and McCall Hatchery:*

The Klickitat and McCall samples from 2015 had the greatest percentage of successful 607 assignments (i.e., 70% and 94%, respectively). This reflects more complete parental baselines 608 available for assignment of all the age classes that are anticipated to be encountered in these 609 samples. Unassigned fish for Klickitat Hatchery were due to incomplete broodstock sampling 610 611 (lower tagging rates) and natural origin fish in the samples from 2015. Of the offspring that were 612 successfully assigned to parents, 100% of the Klickitat samples from 2015 and 99% of the McCall samples from 2015 assigned to their expected broodstock (Table 4). Unexpected 613 broodstock origins for the McCall samples from 2015 included other Snake River hatcheries, and 614 likely represent a small number of strays. 615

616 *Lyons Ferry Hatchery and Nez Perce Tribal Hatchery:*

For interior ocean type lineages (fall Chinook), 36% of the Lyons Ferry samples from 617 2015 and 34% of the Nez Perce samples from 2015 were successfully assigned. This 618 619 comparatively low level of successful assignment may partially reflect the absence of PBT baselines for these hatchery programs from 2010, but it is unlikely that the remaining ~65% of 620 missing assignments could be attributable to age class 5 alone. Offspring samples for both of 621 these programs also included natural origin fish which would also not be expected to assign to 622 623 parent broodstock in the previous generation, but another source of missing assignments is possible (see below). Of those fish that were successfully assigned, over 99% of Lyons Ferry 624 2015 and 100% of the Nez Perce 2015 were assigned to their expected broodstock (Table 4). 625 Unexpected broodstock origins for the Lyons Ferry 2015 samples included one individual from 626 627 the Umatilla 2012 (fall) hatchery program that was likely a stray fish, and one individual from 628 the Pahsimeroi 2011(spring) hatchery program. It is possible that a late migrating spring 629 Chinook could have been inadvertently integrated into the Lyons Ferry hatchery program in 2015. However, spawn date for the assigned parents is not available to either support or refute 630 this possibility. 631

A possible additional source of missing assignments for fall Chinook may have resulted 632 633 from increased false negative assignments (Type II error) stemming from the combined use of LOD-score ≥ 14 with FDR ≤ 0.01 in determining which fish were considered 'assigned'. Recent 634 simulations with interior ocean type Chinook suggest that combining a LOD-score ≥ 14 and a 635 FDR ≤0.01 may result in elevated levels of Type II error (IDFG, unpublished data). However, 636 our empirical data suggests that considering LOD-score ≥ 14 alone results in elevated Type I 637 638 error (false positive assignments), and that jointly considering LOD and some FDR threshold is 639 preferable for controlling both Type I and Type II error. For demonstration purposes, we set our LOD-score ≥ 14 with FDR ≤ 3.0 and adjusted assignments based on these thresholds. While we 640 observed a modest increase in the percentage of interior stream type lineage samples that 641 642 assigned as a result of this adjustment (i.e., 0.6-3.0%), a far greater number of interior ocean type 643 Chinook from the Lyons Ferry and Nez Perce Tribal Hatchery were assigned (i.e., 20%) (Table
644 4). Although the specific FDR threshold to consider for the assignment of fall Chinook has yet
645 to be determined, we will be in a position to assess this in the near future.

646 *Steelhead (95 SNPs)*

To test the accuracy of the steelhead PBT baseline (95 SNPs) in assigning known 647 samples to their hatchery brood of origin, we selected five hatchery collections from 2015 and 648 converted them to unknown samples. These hatchery collections were represented by two inland 649 650 lineages from the from Snake River (i.e., Dworshak Hatchery and Wallowa Hatchery), two inland lineages from the Columbia River (i.e., Umatilla Hatchery and Winthrop Hatchery), and 651 one coastal lineage from the Columbia River (i.e., Parkdale Fish Facility). These collections 652 653 were chosen because of the availability of PBT baselines in previous years that these samples 654 could be assigned to (Table 5). For the interior lineage from the Snake River (i.e., Dworshak Hatchery and Wallowa Hatchery), PBT baselines extend as far back as 2008 and 2009, 655 respectively, that allow us to assign fish from age classes 3, 4 and 5. However, for the interior 656 and coastal lineage from the Columbia River (i.e., Umatilla Hatchery, Winthrop Hatchery, and 657 Parkdale Fish Facility) our baselines extend to 2012 and only permit the assignment of age class 658 659 3. After converting 2015 hatchery returns at each of these facilities to unknown samples, we conducted PBT assignments using brood years 2010-2013 for all hatcheries throughout the 660 Columbia River basin that are represented in our PBT baseline with SNPPIT (See methods for 661 Parentage assignments using SNPPIT software v1.0, ID: 1341). The expectation was that hatchery 662 663 origin fish returning to each facility should assign to parent broodstock in the previous generation from the same hatchery. As described above, not all age classes were represented in 664 PBT baselines for each program so we expected missing assignments for certain stocks. Even 665 when all age classes are available, tagging rates may be lower than 100% that would also result 666 in unassigned offspring. Further, some hatchery programs integrate natural origin fish so these 667 fish would also not be expected to assign to parent broodstock in the previous generation. Given 668 669 that some offspring did not have true parents in the PBT baseline, this approach allowed us to 670 test for false positive assignments in addition to broodstock assignment accuracy. Only those 671 individuals that had a LOD-score \geq 14 and a False Discovery Rate (FDR) \leq 0.01 were considered to be successfully 'assigned', while all others were considered 'unassigned'. 672

673 Dworshak Hatchery & Wallowa Hatchery:

The Dworshak and Wallowa samples from 2015 had the greatest percentage of successful assignments (i.e., 93% and 94%, respectively). This reflects the availability of parental baselines for assignment of all the age classes that are anticipated to be encountered in these samples. Of the offspring that were successfully assigned to parents, 100% of the Wallowa samples from 2015 and 99% of the Dworshak samples from 2015 assigned to their expected broodstock (Table 679 6). The origin for the single Dworshak sample that was assigned to an unexpected broodstock680 came from another Snake River hatchery, and likely represents a stray individual.

681 Umatilla Hatchery, Winthrop Hatchery & Parkdale Facility:

Since the PBT baseline for these facilities only extended to BY2012 and offspring from 682 2015 were tested, we only expected to assign 3-year old (i.e. 1-ocean fish from BY2012) fish to 683 parents. Of the offspring tested, only 19% of the Umatilla samples from 2015 were successfully 684 assigned, while none of the Winthrop samples or Parkdale samples from 2015 were successfully 685 686 assigned. For the Umatilla, this reflects the limited baseline currently available for these hatchery programs (i.e., 2012-present) but will improve in the future as more age classes are represented. 687 For Winthrop, only 19 of the 70 samples from the Winthrop 2015 collection were of hatchery 688 689 origin and could potentially be assigned to broodstock parents. For Parkdale, this program 690 typically has largely natural origin fish so we would did not expect assignments to broodstock parents. (The exact proportion of hatchery origin fish for the Umatilla and Parkdale collections 691 from 2015 was unknown since it was not recorded at time of sampling.) Of the 3-year old (1-692 ocean) Umatilla fish that were successfully assigned, 94% were assigned to their expected 693 broodstock. The single Umatilla sample that was assigned to an unexpected broodstock came 694 695 from the Wallowa Hatchery in 2012, and likely represents a stray individual. For all stocks, false-positive assignments (i.e., assignments to the wrong parents) were highly unlikely but it is 696 697 possible that the few stray fish observed were actually mis-assigned.

698 Accuracy testing of the GSI baseline

699 We used two complementary approaches to test the accuracy of the GSI baselines for sockeye salmon, Chinook salmon and steelhead in assigning known samples to their reporting 700 group of origin. We first used the 'leave-one-out' procedure implemented in ONCOR v1.0 701 702 (Kalinowski et al. 2007) to evaluate how well individuals could be assigned to their population 703 and reporting group of origin. Additionally, we conducted a 'mixture analysis' and randomly 704 selected and removed ~10% of the samples from each population represented in the GSI baseline 705 for each species, and assigned them to reporting groups using the remaining samples in the GSI baseline. For this second approach, we used the individual assignment method implemented in 706 707 ONCOR, and only accepted assignments to reporting groups with a probability ≥ 0.80 ; individuals with assignment probability <0.80 were considered 'unassigned'. 708

Table 5: Steelhead PBT baselines throughout the Columbia River basin. Steelhead hatchery programs are shown, along with run type, lineage and years of availability. Tissues

genotyped using 96 SNPs (X), 192 SNPs (X), and 269 SNPs (X) are shown.

								Year			
Hatchery	Code	Run type	Lineage	2008	2009	2010	2011	2012	2013	2014	2015
Dworshak National Fish Hatchery	OmyDWOR	Unknown	Interior	х	Х	Х	Х	Х	х	х	х
Little Sheep Creek Hatchery	OmyLSCR	Summer	Interior	Х	Х	Х	Х	Х	х	х	х
Lyons Ferry Fish Hatchery- Touchet	OmyTOUW ^a	Summer	Interior	*	Х	Х	Х	Х	x	х	х
Lyons Ferry Fish Hatchery	OmyLYON ^b	Unknown	Interior	*	Х	Х	Х	х	N/A	N/A	N/A
Lyons Ferry Fish Hatchery - Grande Ronde	OmyCGRW ^a	Summer	Interior	х	Х	Х	Х	Х	x	x	х
Lyons Ferry Fish Hatchery - Tucannon	OmyTUCW ^a	Summer	Interior	х	Х	Х	Х	х	x	х	х
Lyons Ferry Fish Hatchery - Wallowa	OmyWALW	Summer	Interior	*	*	*	*	*	*	*	х
Oxbow	OmyOXBO	Summer	Interior	х	х	х	х	х	x	x	х
Sawtooth Fish Hatchery	OmySAWT	Summer	Interior	х	Х	Х	Х	х	x	х	х
Sawtooth Fish Hatchery - East Fork Salmon	OmyEFSW ^c	Summer	Interior	х	х	Х	Х	Х	x	х	х
Sawtooth Fish Hatchery - Squaw Creek	OmySQUW ^d	Summer	Interior	х	х	Х	Х	х	x	х	х
Pahsimeroi Fish Hatchery	OmyPAHH	Unknown	Interior	Х	Х	Х	Х	Х	х	х	Х
Wallowa	OmyWALL	Summer	Interior	*	Х	Х	Х	х	х	х	х
Eastbank Hatchery	OmyEASTBK	Summer	Interior	*	*	*	*	*	*	*	*
Methow Hatchery (Twisp)	OmyTWP	Summer	Interior	*	*	*	*	*	х	Х	Х
Parkdale Fish Facility	OmyPFF	Winter	Coastal	*	*	*	*	х	x	х	Х
Round Butte Fish Hatchery	OmyRB	Summer	Interior	*	*	*	*	*	х	Х	х
Skamania Hatchery (Summer)	OmySKH_su ^e	Summer	Coastal	*	*	*	*	*	х	х	x
Skamania Hatchery (Winter)	OmySKH_wi ^e	Winter	Coastal	*	*	*	*	*	х	х	x
Umatilla Fish Hatchery	OmyUMA	Summer	Interior	*	*	*	*	Х	х	Х	Х
Wells Hatchery	OmyWEL	Summer	Interior	*	*	*	*	*	х	Х	х
Wells Hatchery - Omak stock	OmyWEL_OMA	Summer	Interior	*	*	*	*	*	*	*	х
Winthrop National Fish Hatchery	OmyWTP	Summer	Interior	*	*	*	*	Х	x	Х	Х

^aLyons Ferry stock consolidated under 'OmyLYON' starting in 2012

⁷¹³ ^bLyons Ferry stock discontinued in 2013

^cSawtooth stock consolidated under 'OmySAWT' from 2012-2013

^dSawtooth stock consolidated under 'OmySAWT' in 2012, renamed 'Upper Salmon B-run (YFLW) and consolidated under 'OmyPAHH' starting in 2013

^eSkamania stock is collected late in the calendar year, and is designated for the following broodyear (e.g., late 2012 collections are considered part of BY2013)

N/A - Stock discontinued/non-existent

718 *Broodstock not sampled

- Table 6: Results of the accuracy testing for the steelhead PBT baseline. Collections and their respective lineage/run type are shown along with the PBT baselines available for
- their assignment. The total number of successful assignments, and the number that assigned to their expected brood stock are displayed, as well as the number of unexpected
- assignments and their sources.

								Assigned	to Expected	Assigned to Unexpected	
		PBT Ba	aselines ava	ailable		Total		Broc	odstock	Broodstock	
Collections	Lineage/Run type	2010	2011	2012	Samples	Assignments	Percent assigned	Ν	Proportion	Ν	Source(s)
Dworshak 2015	Interior/Unknown	Х	Х	Х	1490	1383	93%	1382	0.9993	1	OmyLYON11S
Wallowa 2015	Interior/Unknown	Х	Х	Х	468	439	94%	439	1.0000	0	
Umatilla 2015	Interior/Summer			Х	88	17	19%	16	0.9412	1	OmyWALL12S
Winthrop 2015	Interior/Summer			Х	70	0	0%	0	0.0000	0	
Parkdale 2015	Coastal/Winter			Х	46	0	0%	0	0.0000	0	

- 724 Sockeye (87 SNPs)
- 725 *Leave-one-out analysis*

For sockeye salmon, we used GSI baseline v1.0 that comprises four reporting groups (i.e., Wenatchee, Okanogan, Redfish Lake, and Lake Whatcom; N=694). Missing data across loci resulted in the exclusion of 121 of these samples for the leave-one-out analysis. Of the remaining 573 samples, only 15 individuals were assigned incorrectly from the Okanogan reporting group to the Wenatchee reporting group. All remaining samples assigned correctly to their reporting group of origin (Table 7).

732 10 % Mixture analysis

For the 'mixture analysis', we randomly selected and removed 71 individuals from the baseline and assigned them to the remaining samples in the baseline. Every sample was successfully assigned to one of the reporting groups, and all of the samples from the Wenatchee, Redfish Lake and lake Whatcom collections assigned back to their reporting group of origin. There was only a single individual from the Okanogan collection that assigned to an alternate reporting group (i.e., Wenatchee) (Table 8).

The results of these tests are broadly concordant, and indicate that GSI baseline v1.0 is suitable for the assignment of sockeye mixture samples to these reporting groups. Expansion of the baseline to include other collections that may represent additional reporting groups within the Columbia River basin may be possible and could refine the spatial scale of assignments. This will be explored in 2017.

744

- 745 *Chinook (179 SNPs)*
- 746 *Leave-one-out analysis*

For Chinook salmon, we used GSI baseline v3.1 that comprises 61 collections from throughout
the Columbia River basin that are partitioned into 19 reporting groups (N=7083) (Figure 2).
Missing data across loci resulted in the exclusion of 2824 of these samples for the leave-one-out
analysis. Of the remaining 4259 samples, 3507 (77%) assigned correctly to their reporting group
of origin (Table 7). Across all reporting groups, the proportion of correct assignments ranged
from 0.63 (08_JOHNDR) to 1.0 (01_YOUNGS, 04_WILLAM and 09_YAKIMA).

753

The highest proportion of correct assignments was observed for Lower Columbia (LC) lineage reporting groups, and ranged from 0.82 (02_WCASSP) to 1.0 (01_YOUNGS and 04_WILLAM) (Table 8; Figure 6). Incorrect assignments for LC lineage populations were typically to other reporting groups within this lineage with the most common incorrect assignments to reporting groups that included collections from the same river (i.e., Cowlitz spring and fall run). However, three individuals were incorrectly assigned to the Interior Ocean Table 7: Results of the leave-one-out analysis for the sockeye GSI baseline v1.0. Reporting group of origin, the number of samples

available to be assigned, and their assignment by reporting group are shown, as well as the proportion of correct assignments.

			Number a	ssigned to	reporting g	roup
						Proportion
Reporting Group	Ν	Wenatchee	Okanogan	Redfish	Whatcom	correct
Wenatchee	280	280	0	0	0	1.000
Okanogan	182	15	167	0	0	0.918
Redfish Lake	76	0	0	76	0	1.000
lake Whatcom	35	0	0	0	35	1.000

762

- Table 8: Results of accuracy testing for the sockeye salmon GSI baseline v1.0. Reporting group of origin, the number of samples
- successfully assigned and their assignment by reporting group are shown, as well as the proportion of correct assignments.

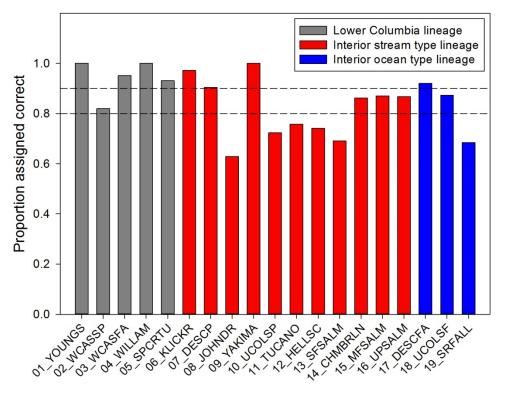
					Number	^r assigned to	reporting group	
Reporting Group	N	N assigned (p≥0.80	Wenatchee	Okanogan	Redfish	Whatcom	Unassigned (p<0.80)	Proportion correct
Wenatchee	33	33	33	0	0	0	0	1.000
Okanogan	24	24	1	23	0	0	0	0.958
Redfish Lake	9	9	0	0	9	0	0	1.000
Lake Whatcom	5	5	0	0	0	5	0	1.000

Type (OT) lineage (18_UCOLSF; 19_SRFALL), and seven individuals were assigned
incorrectly to the Interior Stream Type (ST) lineage (06_KLICKR); likely due introgression that
has occurred between lineages in the Klickitat sub-basin (Hess et al. 2014).

The proportion of correct assignments for OT lineage reporting groups ranged from 0.68 (19_SRFALL) to 0.92 (17_DESCFA) (Table 9; Figure 6). Incorrect assignments for OT lineage populations were typically to other reporting groups within this lineage, or to LC lineage reporting groups (i.e., OTS54 – Upper Deschutes River fall run and OTS55 Lower Yakima River fall run to 02_WCASSP and 03_WCASFA). There was 1 individual from OTS57 – Wenatchee River summer run that incorrectly assigned to 06_KLICKR (Table 7). These types of incorrect assignments were not as common as those to reporting group of the same run type.

777

The proportion of correct assignments for ST lineage reporting groups ranged from 0.63
(08_JOHNDR) to 1.0 (09_YAKIMA) (Table 9; Figure 6). Incorrect assignments were typically
to other reporting groups within this lineage; although, we did observe a single instance where a
ST lineage sample was assigned incorrectly to a LC lineage reporting group (OTS17 – John Day
River spring run to 02_WCASSP) (Table 9).


783

784 *10% Mixture analysis*

We randomly selected and removed 711 samples from these collections and assigned 785 786 them to the remaining samples in the baseline. Of these randomly selected samples, 154 did not have an assignment probability ≥ 0.80 and were 'unassigned'. Nearly all fish assigned correctly 787 to lineage, with only one incorrectly assigned fish from LC to ST (i.e., OTS03 Kalama River 788 spring run to 06 KLICKR) (Table 10). The proportion of fish that assigned correctly to 789 790 reporting group for each of the 61 collections varied widely (0.40-1.00), and could reflect limited samples sizes in some instances (Table 10). When taken in aggregate (i.e., by reporting group of 791 792 origin), the proportion of fish that assigned correctly to reporting groups ranged from 0.69 (10_UCOLSP) to 1.0 (several reporting groups) (Table 10). For the LC lineage, the proportion of 793 fish that assigned correctly to reporting groups ranged from 0.88 (02_WCASSP) to 1.0 794 795 (01 YOUNGS, 04 WILLAM, and 05 SPCRTU) (Table 10). For the OT lineage, the proportion 796 of fish that assigned correctly to reporting group ranged from 0.86 (18_UCOLSF) to 1.0 797 (19_SRFALL) (Table 8). For the ST lineage, the proportion of fish that assigned correctly to 798 reporting group ranged from 0.69 (10_UCOLSP) to 1.0 (06_KLICKR) (Table 10). These results are broadly consistent with the results of the 'leave-one-out' analysis, and reflect the population 799 genetic structure of Chinook salmon lineages within the Columbia River basin (Figure 3). 800

Table 9: Results of the leave-one-out analysis for the Chinook salmon GSI v3.1 baseline. Lineage, run type, reporting group, population ID, population name and samples size used in analysis are provided for each collection in the baseline. The number of correct assignments to reporting group for each population in the baseline are reported (gray shading) and are tallied to provide the number of correct assignments for the reporting group overall (yellow shading). The proportion of correct assignments to reporting group for each population and reporting group (yellow shading) in the baseline is provided.

										T				porting group						1		
	Dura tama	Reporting	Pop	Spring	Spring	Fall	Spring	Fall	Spring	Spring	Spring	Spring	Spring	Spring	Spring	Spring	Spring	Spring	Spring/Summer	Fall		Propo
ineage	Run type	Group	ID Pop Name N OTS01 Youngs Bay fall-run 44	01_YOUNGS	02_WCASSP	03_WCASFA	04_WILLAM	05_SPCRTU	06_KLICKR	07_DESCSP	08_JOHNDR	09_YAKIMA	10_UCOLSP	11_TUCANO	12_HELLSC	13_SFSALM	14_CHMBLN	15_MFSALM	16_UPSALM	17_DESCFA	18_UCOLSF 19_SRFALL	corr 1.00
ower umbia	Spring	01_YOUNGS																				
			Reporting Group total 44 OTS02 Cowlitz R spring-run 66	44	57	8		1														1.0 0.8
ower	Spring	02 WCASSP	OTSO3 Kalama R spring-run 39		29	0	3	1	7													0.7
umbia	- F9		Reporting Group total 105		86																	0.8
			OTS04 Cowlitz R fall-run 41		4	37																0.9
			OTS05 Elochoman R fall-run 36	2	1	28		5														0.7
ower	Fall	03_WCASFA	OTS06 Lewis R fall-run 49			49																1.0
lumbia	1 dii		OTS07 NF Lewis fall-run 89			89																1.0
			OTS08 Sandy R fall-run 50			49															1	0.9
			Reporting Group total 265			252																0.9
			OTS09 McKenzie R spring-run 13				13															1.0
_ower olumbia	Spring	04_WILLAM	OTS10N Santiam R spring-run21OTS11Sandy R spring-run18				21 18															1.0 1.0
			Reporting Group total 52 OTS12 White Salmon fall-run 21			1	52	20														1.0 0.9
ower	Fall	05 SPCRTU	OTS13 Spring Creek NFH tule fall-run 22					20													2	0.9
olumbia		_	Reporting Group total 43					40														0.9
nterior			OTS14 Klickitat R spring-run 35						34				1									0.9
tream type	Spring	06_KLICKR	Reporting Group total 35						34													0.9
			OTS15 Shitike R spring-run 69						1	58	1		6			2		1				0.8
nterior tream	Spring	07_DESCSP	OTS16Warm Springs R spring-run56							55					1							0.9
type			Reporting Group total 125							113												0.9
t t			OTS17 John Day R spring-run 50		1						29		3		15	1			1			0.5
nterior	Corina		OTS18 Middle Fork John Day R spring-run 25								20		1		3	1						0.8
stream type	Spring	08_JOHNDR	OTS19 North Fork John Day R spring-run 22								12	1	2		5	2						0.5
			Reporting Group total 97								61											0.6
nterior			OTS20 American R spring-run 35									35										1.0
stream	Spring	09_YAKIMA	OTS21 Cle-Elum spring-run 0																			
type			Reporting Group total 35									35										1.0
			OTS22 Winthrop NFH spring-run 54								2		36	1	9	2		1	3			0.6
nterior	c		OTS23 little White Salmon R spring-run 70								1		57		6	3		1	3			0.8
tream type	Spring	10_UCOLSP	OTS24Wenatchee R spring-run46OTS25Entiat R spring-run65						1	1	1	1	38 39	1	3 13	1		1	4			0.8 0.6
									1	1	5	1			15	1						
nterior			Reporting Group total 235 OTS26 Tucannon R spring-run 37									2	170 2	28	4			1				0.7 0.7
tream	Spring	11_TUCANO										2	2		4			1				
type			Reporting Group total 37 OTS27 Wenaha R spring-run 122						4		9		13	28	89	2			2			0.7 0.7
			OTS28 Lostine R spring-run 135						4		10	1	3	2	114	5		2	5			0.8
			OTS29 Grande Ronde R spring-run 111						1		13	1	14	1	65	4		4	8			0.5
nterior			OTS30 Imnaha R spring-run 77							1	1		3		53	3		6	10			0.6
stream	Spring	12_HELLSC	OTS31 Lolo Cr spring-run 62								1		5		46	3	1	2	4			0.7
type			OTS32 Red R spring-run 186								6		20		140	3		5	12			0.7
			OTS33Powell R spring-run41OTS34Red R weir spring-run81								1		8		25 72	1		4	3			0.6 0.8
			· · · ·								1		1			1		2	4			
			Reporting Group total 815 OTS35 South Forth Salmon R spring-run 118								3		2		604 17	54	2	19	20			0.7 0.4
nterior			OTS36 Johnson Cr spring-run 117							1	3		2		4	93	1	19	8			0.4
stream type	Spring	13_SFSALM	OTS37 Secesh R spring-run 98								1		1		6	83		5	2			0.8
type			Reporting Group total 333													230						0.6
nterior			OTS38 Chamberlain Cr spring-run 166												8	6	143	5	4			0.8
stream type	Spring	14_CHMBLN	Reporting Group total 166														143					0.8
			OTS39 Big Cr spring-run 102								2				12	4	1	75	8			0.7
			OTS40 Camas Cr spring-run 47												1		2	41	3			0.8
			OTS41 Loon Cr spring-run 89							1	1				3	3	2	77	2			0.8
nterior tream	Spring	15_MFSALM	OTS42 Sulphur Cr spring-run 78								1		2		5	3		66	1			0.8
type		_	OTS43 Bear Valley Cr spring-run 111										1		F		1	110	1			0.9
			OTS44Capehorn Cr spring-run139OTS45Marsh Cr spring-run150								1		1		5	5	1	126 128	1 10			0.9 0.8
															-				10			
			Reporting Group total 716 OTS46 North Fork Salmon R spring-run 18										1		2	1		623 1	13			0.8 0.7
			OTS47 Lemhi R spring-run 73								1		1		6	3		6	57			0.7
			OTS48Pahsimeroi R spring-run73										1		2	3		1	66			0.9
iterior			OTS49 East Fork Salmon R spring-run 220												8	4		8	200			0.
tream	Spring/Summer	16_UPSALM	OTS50 Salmon R spring-run 62										1			1		4	56			0.
type			OTS51 West Fork Yankee Fork spring-run 68								1				1	2			64			0.
			OTS52 Valley Cr spring-run 87								1				5	2	4	2	77			0.
			OTS53 Sawtooth Hatchery weir spring-run 135												7	Э	1	12	105			0.
nterior			Reporting Group total 736		4														638	102		0.
ocean	Fall	17_DESCFA	OTS54 upper Deschutes R fall-run 112		1	1														103	4 3	0.
type			Reporting Group total 112				-													103		0.
			OTS55lower Yakima R fall-run36OTS56Hanford Reach fall-run53		1	1	-														26 8 41 12	0. 0.
terior			OTS56Hanford Reach fall-run53OTS57Wenatchee R summer-run54	1					1												41 12 52 1	0. 0.
ocean	Summer/Fall	18_UCOLSF	OTS57 Wenatchee R Summer-run 54 OTS58 Entiat R summer-run 18	1			1		1												17 1	0.
type			OTS59Entact is Sammer run10OTS59Methow R summer run52																		50 2	0.
			Reporting Group total 213																		186	0.8
toria			OTS60 Lyons Ferry weir fall-run 26																		4 22	0.0
nterior ocean	Fall	19_SRFALL	OTS61 Clearwater R fall-run 69																	3	23 43	0.6
		1	Reporting Group total 95								1										65	0.

GSI reporting group

Figure 6: Proportion of Chinook salmon in leave-one-out tests that assigned correctly for each
reporting group by lineage. The dashed lines indicate 80% and 90% thresholds for correct
assignment.

800 2

Table 10: Results of the 10% mixture analysis for the Chinook salmon GSI v3.1 baseline. Lineage, run type, reporting group, population ID, population name and samples size used in analysis are provided for each collection in the baseline. The number of fish that had a probability of assignment ≥ 0.80 is provided. The number of correct assignments to reporting group for each population in the baseline are reported (gray shading) and are tallied to provide the number of correct assignments for the reporting group overall (yellow shading). The number and proportion of unassigned (p<0.80) fish is shown. The proportion of correct assignments to reporting group for each population and reporting group (yellow shading) in the baseline is provided.

2		Reporting		N assigned									Number a	ssigned to repo	rting group										assigned p<0.80)	Proportion assigned
Lineage	Run type	Group	Pop ID Pop Name N Youngs Bay fall-		01_YOUNGS	02_WCASSP	03_WCASFA	04_WILLAM	05_SPCRTU	06_KLICKR	07_DESCSP	08_JOHNDR	09_YAKIMA	10_UCOLSP	11_TUCANO	12_HELLSC	13_SFSALM	14_CHMBLN	15_MFSALM	16_UPSALM	17_DESCFA	18_UCOLSF	19_SRFALL		Proportion	correct
Lower	Spring	01_YOUNGS	OTS01 run 9	9	9																			0	0.0000	1.0000
Columbia			Reporting Group total 9	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0000	1.0000
			Cowlitz R OTS02 spring-run 9	9		9																		0	0.0000	1.0000
Lower Columbia	Spring	02_WCASSP	Kalama R OTS03 spring-run 8	7		5		1		1														1	0.1429	0.7143
			Reporting Group total 17	16	0	14	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.0625	0.8750
			Cowlitz R fall- OTS04 run 8	7			7																	1	0.1429	1.0000
			Elochoman R OTS05 fall-run 9	9	1		7		1															0	0.0000	0.7778
Lower	Fall	03_WCASFA	OTS06 Lewis R fall-run 9	9			9																	0	0.0000	1.0000
Columbia			NF Lewis fall- OTS07 run 18	18			18																	0	0.0000	1.0000
			OTS08 Sandy R fall-run 8	7			7																	1	0.1429	1.0000
			Reporting Group total 52 McKenzie R	50	1	0	48	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0.0400	0.9600
			OTS09 spring-run 8 N Santiam R	8				8																0	0.0000	1.0000
Lower Columbia	Spring	04_WILLAM	OTS10 spring-run 8 Sandy R spring-	8				8																0	0.0000	1.0000
			OTS11 run 5	4				4																1	0.2500	1.0000
			Reporting Group total 21 White Salmon	20	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.0500	1.0000
			OTS12 fall-run 8 Spring Creek	8					8															0	0.0000	1.0000
Lower Columbia	Fall	05_SPCRTU	NFH tule fall-	-					-																0.0000	1 0000
			OTS13 run 5	5 13	0	0	0	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0.0000	1.0000 1.0000
Interior			Reporting Group total 13 Klickitat R 0	7	0	0	0	0	13		0	0	0	0	0	0	0	0	0	0	0	0	0	0		
stream type	Spring	06_KLICKR	OTS14 spring-run 8 Reporting Group total 8	7	0	0	0	0		7		0	0	0	0	0	0		0	0	0	0	0	1	0.1429 0.1429	1.0000 1.0000
			Shitike R spring-	9	0	0	0	0	0	/	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Interior stream	Spring	07_DESCSP	OTS15 run 9 Warm Springs R								8			L										0	0.0000	0.8889
type			OTS16 spring-run 9 Reporting Group total 18	8 17	0	0	0	0		0	8 16	0	0	1		0	0		0	0	0	0	0	1	0.1250 0.0588	1.0000 0.9412
			John Day R		0	0	0	0	0	0	10	0	0	1	0	0	0	0	0	0	0	0	0	1		
			OTS17 spring-run 8 Middle Fork	2								2												6	3.0000	1.0000
Interior stream	Spring	08_JOHNDR	John Day R OTS18 spring-run 5	3								2				1								2	0.6667	0.6667
type			North Fork John Day R spring-	_																						
			OTS19 run 4	1	0							1										0		3	3.0000	1.0000
			Reporting Group total 17 American R	6	0	0	U	0	0	0	U	5	0	0	U	1	0	0	0	0	0	U	U	11	1.8333	0.8333
Interior stream	Spring	09_YAKIMA	OTS20 spring-run 8 Cle-Elum	8									8											0	0.0000	1.0000
type			OTS21 spring-run 9	7	0	0	0	0		0		0	6 14	0		1	0		0	0	0	0	0	2	0.2857 0.1333	0.8571 0.9333
			Reporting Group total 17 Winthrop NFH 0	15	0	0	0	0	0	0	0	0	14	, , , , , , , , , , , , , , , , , , ,	0	1	0	0	0	0	0	0	0	2		
			OTS22 spring-run 8 little White	5								1		4										3	0.6000	0.8000
Interior			Salmon ROTS23spring-run9	6										5		1								3	0.5000	0.8333
stream type	Spring	10_UCOLSP	Wenatchee ROTS24spring-run11	8										6		1				1				3	0.3750	0.7500
			Entiat R spring- OTS25 run 10	7								1	1	3		2								3	0.4286	0.4286
			Reporting Group total 38	26	0	0	0	0	0	0	0	2	1	18	0	4	0	0	0	1	0	0	0	12	0.4615	0.6923
Interior stream	Spring	11_TUCANO	Tucannon R OTS26 spring-run 8	5											4	1								3	0.6000	0.8000
type	568	11_100,400	Reporting Group total 8	5	0	0	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	0	0	3	0.6000	0.8000
			Wenaha ROTS27spring-run18	10												10								8	0.8000	1.0000
			Lostine ROTS28spring-run21	15										2		13								6	0.4000	0.8667
			Grande Ronde OTS29 R spring-run 31	23										1		21			1					8	0.3478	0.9130
Interior			Imnaha R OTS30 spring-run 10	4												2			1	1				6	1.5000	0.5000
Interior stream	Spring	12_HELLSC	Lolo Cr spring- OTS31 run 9	6										1	-	5			_				_	3	0.5000	0.8333
type			Red R spring- OTS32											1		14				1				6	0.3750	0.8750
			OTS33 run 6	3										1		2								3	1.0000	0.6667
			Red R weirOTS34spring-run9	8										-		7	1							1	0.1250	0.8750
			Reporting Group total 126		0	0	0	0	0	0	0	0	0	6	0	74	1	0	2	2	0	0	0	41	0.4824	0.8706
			South Forth Salmon R						-		-				-		_					-	-			
Interior			OTS35 spring-run 14 Johnson Cr	7													7							7	1.0000	1.0000
stream type	Spring	13_SFSALM		10													10							4	0.4000	1.0000
type			OTS37 spring-run 25	17													16	1						8	0.4706	0.9412
			Reporting Group total 53 Chamberlain Cr 53	34	0	0	0	0	0	0	0	0	0	0	0	0	33	1	0	0	0	0	0	19	0.5588	0.9706
Interior stream	Spring	14_CHMBLN	OTS38 spring-run 22	17												1		16						5	0.2941	0.9412
type			Reporting Group total 22 Big Cr spring-	17	0	0	0	0	0	0	0	0	0	0	0	1	0	16	0	0	0	0	0	5	0.2941	0.9412
			OTS39 run 14	11												2			7	2				3	0.2727	0.6364
			Camas Cr OTS40 spring-run 6	5															5					1	0.2000	1.0000
Interior			Loon Cr spring-OTS41run11	10												1			9					1	0.1000	0.9000
stream type	Spring	15_MFSALM	Sulphur CrOTS42spring-run9	8															8					1	0.1250	1.0000
			Bear Valley CrOTS43spring-run14	13															13					1	0.0769	1.0000
			Capehorn Cr OTS44 spring-run 21	21													1	1	19					0	0.0000	0.9048
				17							89)							17					6	0.3529	1.0000

			spring-run																		1						
		Rep	orting Group total	98	85	0	0	0	0	0	0	0	0	0	0	0	3	1	1	78	2	0	0	0	13	0.1529	0.9176
			North Fork																								
		OTS46	Salmon R spring-run	6	C												1				2				2	1.0000	0.6667
		01340	Lemhi R spring-	0	3												L				2				3	1.0000	0.0007
		OTS47	run	10	6															1	5				4	0.6667	0.8333
			Pahsimeroi R																								
		OTS48	spring-run	9	8																8				1	0.1250	1.0000
			East Fork																								
		07540	Salmon R	20	20													1			10				0	0.4500	0.0500
Interior		OTS49	spring-run Salmon R	29	20													L			19				9	0.4500	0.9500
	er 16_UPSALM	OTS50	spring-run	8	6																6				2	0.3333	1.0000
type			West Fork		-																						
			Yankee Fork																								
		OTS51	spring-run	8	8																8				0	0.0000	1.0000
		07050	Valley Cr	10	_																-				-	1 0000	1 0000
		OTS52	spring-run Sawtooth	10	5																5				5	1.0000	1.0000
			Hatchery weir																								
		OTS53		19	11																11				8	0.7273	1.0000
		_													•	•		_					•				
		кер	orting Group total upper	99	67	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	64	0	0	0	32	0.4776	0.9552
Interior			Deschutes R																								
ocean Fall	17_DESCFA	OTS54	fall-run	25	22																	21		1	3	0.1364	0.9545
type		Rep	orting Group total	25	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21	0	1	3	0.1364	0.9545
			lower Yakima R																								
		OTS55	fall-run Hanford Reach	6	5																		2	3	1	0.2000	0.4000
		OTS56	fall-run	9	8																		7	1	1	0.1250	0.8750
Interior			Wenatchee R																								
ocean Summer'Fal	I 18_UCOLSF	OTS57	summer-run	9	9																		9		0	0.0000	1.0000
type		OTS58	Entiat R summer-run		4																		4		1	0.2500	1.0000
		01330	Methow R		+																		4		1	0.2300	1.0000
		OTS59		9	9																		8	1	0	0.0000	0.8889
		Rep	orting Group total	38	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30	5	3	0.0857	0.8571
			Lyons Ferry																								
Interior		OTS60	weir fall-run	9	9																			9	0	0.0000	1.0000
ocean Fall	19_SRFALL	OTS61	Clearwater R fall-run	23	19																			19	4	0.2105	1.0000
type			•		15																1			15	-	0.2103	1.0000
		Rep	orting Group total	32	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	28	4	0.1429	1.0000

814 Steelhead (180 SNPs)

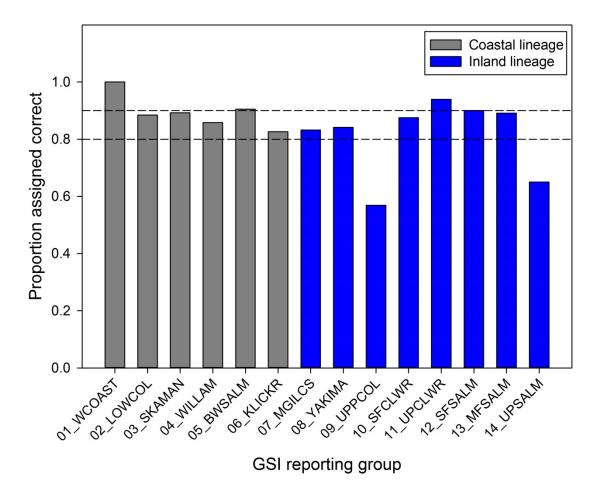
815 *Leave-one-out analysis*

816 For steelhead, we used GSI baseline v3.3 that comprises 116 collections from throughout 817 the Columbia River basin that are partitioned into 14 reporting groups (N=9991) (Figure 4). Missing data across loci resulted in the exclusion of 4746 samples for the leave-one-out analysis. 818 Of the remaining 5245 samples, 84% assigned correctly to lineage. The highest proportion of 819 correct assignments to was observed for the coastal lineage reporting groups and ranged from 820 821 0.83 (06 KLICKR) to 1.0 (01 WCOAST) (Table 11). The proportion of correct assignments for 822 inland lineage reporting groups ranged from 0.57 (09_UPPCOL) to 0.94 (11_UPCLWR) (Table 11). Few samples from the coastal lineage (i.e., 01_WCOAST – 06_KLICKR reporting groups) 823 824 were incorrectly assigned to reporting groups of the inland lineage (i.e., 07 MGILCS – 825 14_UPSALM reporting groups) (Table 11). The converse situation was also true – few samples from reporting groups from the inland lineage were incorrectly assigned to coastal lineage 826 reporting groups (Table 11). 827

Across all reporting groups, the proportion of correct assignments ranged from 0.57 828 (09 UPPCOL) to 1.0 (01 WCOAST) (Table 11; Figure 7). The proportion of correct 829 assignments for most reporting groups was >0.80; the two exceptions being 09_UPPCOL (0.57) 830 831 and 14_UPSALM (0.65) (Table 11; Figure 7) with the majority of incorrect assignments to the 07_MGILCS reporting group. Incorrect assignments were typically distributed across multiple 832 reporting groups, but the largest proportion of incorrect assignments were consistently to three 833 reporting groups (07 MGILCS, 09 UPPCOL, 14 UPSALM). Samples from the geographically 834 large 07 MGILCS reporting group were incorrectly assigned to every reporting group upstream 835 (i.e, 08 YAKIMA – 14 UPSALM) (Table 11). Furthermore, the 07 MGILCS reporting group 836 comprised the greatest proportion of incorrectly assigned samples from each reporting group 837 from 08_YAKIMA - 14_UPSALM (Table 11). 838

839 *10% mixture analysis*

We randomly selected and removed 1008 samples from these collections and assigned 840 841 them to the remaining samples in the baseline. Of these randomly selected samples, 196 did not have an assignment probability ≥ 0.80 and were 'unassigned'. The proportion of fish that 842 assigned correctly to reporting group for each of the 116 collections varied widely (0.00-1.00), 843 and could reflect limited samples sizes in some instances (Table 12). When taken in aggregate 844 845 (i.e., by reporting group of origin), the proportion of fish that assigned correctly to reporting groups ranged from 0.32 (09_UPPCOL) to 1.0 (01_WCOAST and 05_BWSALM, and 846 847 12_SFSALM). The proportion of fish that assigned correctly for most other reporting groups was \geq 0.80, with a couple of exceptions (i.e., 08 YAKIMA and 14 UPSALM) (Table 12). These 848 results are broadly concordant with those from those of the 'leave-one-out analysis', and reflect 849 the population genetic structure of steelhead within the Columbia River Basin (Figure 5). 850


Table 11: Results of the leave-one-out analysis for the steelhead GSI v3.3 baseline. Reporting group, population ID, population name and samples size used in analysis are provided for each collection in the baseline. The number of correct assignments to reporting group for each

852 population in the baseline are reported (gray shading) and are tallied to provide the number of correct assignments for the reporting group overall (yellow shading). The proportion of correct assignments to reporting group for each population and reporting group (yellow shading) in
853 the baseline is provided.

Number assigned to reporting group Reporting **Proportion assigned** 01_WCOAST 02_LOWCOL 03_SKAMAN 04_WILLAM 05_BWSALM 06_KLICKR 07_MGILCS 08_YAKIMA 09_UPPCOL 10_SFCLWR 11_UPCLWR 12_SFSALM 13_MFSALM 14_UPSALM PopID Pop Name Lineage Group Ν correct 56 56 Quinault River 1.000 OMY001 01_WCOAST Coastal **Reporting Group total** 56 56 1.000 Mill Creek 28 26 OMY002 2 0.929 22 OMY003 Germany Creek 1 19 2 0.864 OMY004 **Coweeman River** 21 20 0.952 1 OMY005 46 46 Cowliltz River 1.000 25 24 OMY006 Kalama River - winter run 1 0.960 44 31 OMY007 East Fork Lewis River 8 4 1 0.705 02_LOWCOL Coastal OMY008 North Fork Lewis River 51 48 2 0.941 1 9 OMY009 Luckiamute River 9 1.000 OMY010 Willamina Creek 6 6 1.000 OMY011 Still Creek 13 9 2 2 0.692 20 14 2 OMY012 East Fork Hood River 4 0.700 285 252 0.884 **Reporting Group total** OMY013 Kalama River - summer run 49 1 13 35 0.714 2 19 17 OMY014 Clackamas River - summer run 0.895 03_SKAMAN Coastal OMY015 Klickitat-Skamania - summer run 80 80 1.000 **Reporting Group total** 148 132 0.892 OMY016 Clackamas River - winter run 44 2 2 39 1 0.886 OMY017 North Fork Eagle River 28 7 21 0.750 OMY018 19 17 Eagle River 2 0.895 40 OMY019 Little Rock/Mad River 4 35 0.875 1 Coastal 04_WILLAM OMY020 18 17 0.944 North Fork Santiam River 1 48 7 OMY021 1 40 South Fork Santiam River/Wiley 0.833 **Reporting Group total** 197 169 0.858 Big White Salmon River 21 19 OMY022 2 0.905 05_BWSALM Coastal **Reporting Group total** 21 0.905 19 20 OMY023 Upper Trout Creek 19 1 0.950 OMY024 Suveyors Creek 12 12 1.000 OMY025 Snyder Creek 13 12 1 0.923 OMY026 17 13 Lower Summit Creek 1 1 1 1 0.765 9 OMY027 Lower Trout Creek 1 8 0.889 5 OMY028 6 1 0.833 Coastal 06_KLICKR Lower White Creek OMY029 Little Klickitat River 8 1 6 1 0.750 6 2 3 OMY030 Dead Canyon Creek 1 0.500 OMY031 Bowman Creek 12 2 6 2 2 0.500 OMY032 Swale Creek 12 11 0.917 1 115 0.826 **Reporting Group total** 95 OMY033 Fifteenmile Creek 37 1 32 0.865 2 1 1 22 OMY034 Pelton 13 2 2 1 4 0.591 OMY035 Shitike Creek 9 7 1 0.778 1 21 19 1 OMY036 **Buck Hollow Creek** 1 0.905 20 2 OMY037 Deschutes River-Trout Creek 15 1 1 1 0.750 OMY038 Deschutes River-upper mainstem 17 17 1.000 OMY039 7 Beech 6 1 0.857 OMY040 John Day River - upper mainstem 8 8 1.000

		0	voin Duy inter upper manoteri	· · · · · · · · · · · · · · · · · · ·	 	'	↓V		/′	t'	·'	łł			+	21000
		OMY041	Baldy	13		'		13	ļ'	ļ'	ļ'	<u> </u>		<u> </u>		1.000
		OMY042	John Day River - lower mainstem	11		'		11	ļ'	ļ'	ļ'	<u> </u>		<u> </u>		1.000
		OMY043	John Day River - upper middle fork	50	 			48		1				1		0.960
		OMY044	Granite	6	 			6								1.000
		OMY045	North Fork John Day River	32				30		1			1			0.938
		OMY046	Big Wall	14				12		1			1			0.857
		OMY047	Deer Creek	10	 			10								1.000
		OMY048	Murderers Creek	17	 			17								1.000
		OMY049	Rock Creek	83	 			68	2	2	1	3			7	0.819
		OMY050	Squaw Creek	95	 			72	2	6	3	2		2	8	0.758
		OMY051	Iskuulpa Creek	105			1	87	6	5					6	0.829
		OMY052	Umatilla River	18				15		1		1		1		0.833
Inland	07_MGILCS	OMY053	Touchet River	51				51								1.000
		OMY054	Alpowa Creek	65				43	3	11	4	1			3	0.662
		OMY055	Asotin Creek	119				85	6	17	2	1	1	2	5	0.714
		OMY056	Tucannon River	66				49	5	7				2	3	0.742
		OMY057	Joseph Creek	49				46		1				1	1	0.939
		OMY058	Little Minam River	23				20	2	1						0.870
		OMY059	Menatchee Creek	17				15	1	1						0.882
		OMY060	Upper Grand Ronde River	86				76	1	4				2	3	0.884
		OMY061	Wallowa River	58				49	3	3					3	0.845
		OMY062	Wenaha River	101				87		9				1	4	0.861
		OMY063	Big Sheep Creek	79				73	1	2				1	2	0.924
		OMY065	Lightning Creek	9				7	1						1	0.778
		OMY066	Upper Imnaha River	25				21		2				2		0.840
		OMY067	Big Bear Creek	142				125	1	6	2	3			5	0.880
		OMY068	East Fork Potlatch River	103			1	87		4	5	3	2		1	0.845
		OMY069	Lapwai Creek	58				48	2	4					4	0.828
		OMY072	West Fork Potlatch River	57				46		3	7				1	0.807
		OMY073	Little Salmon River	87				62	2	1	2		1	5	15	0.713
		OMY074	Slate Creek	50				34		2			2	1	11	0.680
			Reporting Group total	1840				1530								0.832
		OMY075	Naches River - Rattlesnake Creek	13		ļ'		2	10	1		<u> </u>		<u> </u>		0.769
		OMY076	Naches River - Nile Creek	30				2	25	2				1		0.833
Inland	08_YAKIMA	OMY077	Naches River - Pileup Creek	8					7						1	0.875
inialiu		OMY078	Naches River - Quartz Creek	11				2	9							0.818
		OMY079	North Fork Little Naches River	5				1	3	1						0.600
												·				

	I	014/081	Tangagiah Casak	10		1	I	1		10	1	1					1.000
		OMY081	Toppenish Creek	16						16							
		OMY081.2	Ahtanum Creek	4					1	3							0.750
		OMY081.3	Yakima River - Big Creek	6						6							1.000
		OMY081.4	Cowiche River - Crow Creek	4						4							1.000
		OMY081.5	Teanaway River	13				1	2	10							0.769
		OMY081.6	Little Rattlesnake Creek	11					2	8	1						0.727
			Reporting Group total	151						127							0.841
		OMY082	Chiwaukum Creek	16					3	1	12						0.750
		OMY083	Upper Chiwaukum Creek	12					3		6				2	1	0.500
		OMY084	Nason River	11					4		7						0.636
Inland	09_UPPCOL	OMY085	Entiat River	122					49	5	60	1	2	1	1	3	0.492
		OMY086	Methow River	48					19	1	25		1			2	0.521
		OMY088	Omak River	44					6	1	34					3	0.773
			Reporting Group total	253							144						0.569
		OMY070	Lolo Creek	59					2			53	4				0.898
		OMY090	Clear Creek	28				1	2			23	2				0.821
		OMY091	Crooked River	60					4			54	2				0.900
Inland	10_SFCLWR	OMY092	Newsome Creek	62								58	4				0.935
		OMY093	Tenmile Creek	31					3			22	6				0.710
												24.0					0.075
		014/004	Reporting Group total	240								210	10				0.875
		OMY094	Bear Creek	49					6		1	12	48			1	0.980
		OMY095	Lower Selway River	136					6		1	12	117				0.860
lu la u d		OMY096	Middle Lochsa River	87					2		1	1	83			1	0.954
Inland	11_UPCLWR	OMY097	Middle Lochsa River	88					2		1	2	83				0.943
		OMY098	Upper Lochsa River	74							4	4	70				0.946
		OMY099	Upper Lochsa River	153					1		1	1	150				0.980
			Reporting Group total	587									551				0.939
		OMY100	East Fork South Fork Salmon River	77					5		1			68	3		0.883
Inland	12_SFSALM	OMY101	Secesh River	136					9		1			122	1	3	0.897
		OMY102	South Fork Salmon River	18										18			1.000
			Reporting Group total	231										208			0.900
		OMY103	Bear Valley Creek	124					4					1	119		0.960
		OMY104	Big Creek	131					7			1			119	4	0.908
		OMY105	Camas Creek	45					2	1					42		0.933
	40.000	OMY106	Chamberlain Creek	106					9		1			1	92	3	0.868
Inland	13_MFSALM	OMY107	Loon Creek	71					1				1		68	1	0.958
		OMY108	Marsh Creek	120					9	2	5				93	11	0.775
		OMY109	Middle Fork Salmon River	112					8					1	99	4	0.884
			Reporting Group total	709											632		0.891
		OMY110	Herd Creek	38				1	8		1				001	28	0.737
		OMY110	Lemhi River	18				-	3						1	14	0.778
		OMY112	Morgan Creek	26			1		4		1				<u> </u>	20	0.769
Inland	14_UPSALM	OMY112 OMY113	North Fork Salmon River	73			<u>+</u>		34		3		1	1	1	33	0.452
inana		OMY114	Pahsimeroi River	55			2		14				-	-	1	38	0.691
		OMY114	Sawtooth Hatchery	202					63		2				2	135	0.668
					1						-						
L			Reporting Group total	412												268	0.650

857 Figure 7: Proportion of steelhead in leave-one-out tests that assigned correctly for each reporting

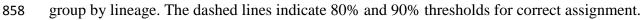


Table 12: Results of the 10% mixture analysis for the steelhead GSI v3.3 baseline. Reporting group, population ID, population name and samples size used in analysis are provided for each collection in the baseline. The number of fish that had a probability of assignment ≥ 0.80 is provided. The number of correct assignments to reporting group for each population in the baseline are reported (gray shading) and are tallied to provide the number of correct assignments for the reporting group overall (yellow shading). The number and proportion of unassigned (p<0.80) fish is shown. The proportion of correct assignments to reporting group for each population and reporting group (yellow shading) in the baseline is provided.

		pulation and	reporting group (yellow	snadi	ing) in the baseline	e is provided.					Number assigr	ned to reporting	group							Unassigned (p<0.80)	
Lineage	Reporting Group	PopID	Pop Name	N	N assigned (p>0.80)	01_WCOAST	02_LOWCOL	03_SKAMAN	04_WILLAM					09_UPPCOL	10_SFCLWR	11_UPCLWR	12_SFSALM	13_MFSALM		N Proportion	Proportion assigned correct
Coastal	01_WCOAST	OMY001	Quinault River	9	9	9														0 0.0000	1.000
	_		Reporting Group total		9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0.0000	1.000
		OMY002 OMY003	Mill Creek Germany Creek	4	4	1	4													0 0.0000 0 0.0000	1.000 0.800
		OMY004	Coweeman River	5	4	1	4													1 0.2000	1.000
		OMY005	Cowliltz River	9	9		9													0 0.0000	1.000
		OMY006	Kalama River - winter run	9	8		8													1 0.1111	1.000
Coastal	02_LOWCOL	OMY007	East Fork Lewis River	8	7		7			+	+	+								1 0.1250	1.000
		OMY008 OMY009	North Fork Lewis River Luckiamute River	9	9		9													0 0.0000 0 0.0000	1.000
		OMY010	Willamina Creek	3	3		3													0 0.0000	1.000
		OMY011	Still Creek	3	1		1													2 0.6667	1.000
		OMY012	East Fork Hood River	5	4		0		1		3									1 0.2000	0.000
			Reporting Group total	63	57	1	52	0	1	0	3	0	0	0	0	0	0	0	0	6 0.0952	0.912
		OMY013	Kalama River - summer run	9	7		3	4												2 0.2222	0.571
		OMY014	Clackamas River - summer run	6	6			6												0 0.0000	1.000
Coastal	03_SKAMAN	OMY015	Klickitat-Skamania - summer run	25	25			25												0 0.0000	1.000
					38	0	2		0	0	0	0	0	0	0	0	0	0			0.921
		OMY016	Reporting Group total Clackamas River - winter run	40 9	8	0	3	35	8	0			0	0	U	0	U	0	0	2 0.0500 1 0.1111	1.000
		OMY017	North Fork Eagle River	4	4		1		3											0 0.0000	0.750
		OMY018	Eagle River	5	4				4											1 0.2000	1.000
Coastal	04_WILLAM	OMY019	Little Rock/Mad River	5	4				4											1 0.2000	1.000
		OMY020	North Fork Santiam River South Fork Santiam	4	4				4											0 0.0000	1.000
		OMY021	River/Wiley	9	8			2	6		<u> </u>									1 0.1111	0.750
			Reporting Group total	36	32	0	1	2	29	0	0	0	0	0	0	0	0	0	0	4 0.1111	0.906
Coastal	05_BWSALM	OMY022	Big White Salmon River	8	8					8	<u> </u>	<u> </u>							ļ[0 0.0000	1.000
Coastal			Reporting Group total	8	8	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0 0.0000	1.000
		OMY023	Upper Trout Creek	3	3						3	<u> </u>								0 0.0000	1.000
		OMY024	Suveyors Creek	3	3						3	<u> </u>								0 0.0000	1.000
		OMY025 OMY026	Snyder Creek Lower Summit Creek	3	3 4						3	<u> </u>								0 0.0000	1.000
		OMY027	Lower Trout Creek	2	2					-	2									0 0.0000	1.000
Inland	06_KLICKR	OMY028	Lower White Creek	3	3						2	1								0 0.0000	0.667
		OMY029	Little Klickitat River	3	3						3									0 0.0000	1.000
		OMY030	Dead Canyon Creek	2	1						1									1 0.5000	1.000
		OMY031	Bowman Creek	4	4						3								1	0 0.0000	0.750
		OMY032	Swale Creek	2	2					+	2									0 0.0000	1.000
		OMY033	Reporting Group total Fifteenmile Creek	29 9	28 8	0	0	0	0	0	26	1	0 1	0	0	0	0	0	1	1 0.0345 1 0.1111	0.929 0.875
		OMY034	Pelton	5	3							2							1 1	2 0.4000	0.667
		OMY035 OMY036	Shitike Creek Buck Hollow Creek	3	3 4							3							1 1	0 0.0000 2 0.3333	1.000 1.000
		OMY037	Deschutes River-Trout Creek	-	4							4								2 0.3333	1.000
		OMY038	Deschutes River-upper mainstem	6	5							5								1 0.1667	1.000
		OMY039	Beech	2	1							1								1 0.5000	1.000
		OMY040	John Day River - upper mainstem	3	3							3								0 0.0000	1.000
		OMY041	Baldy	3	3							3								0 0.0000	1.000
		OMY042	John Day River - lower mainstem	4	3							3								1 0.2500	1.000
		OMY043	John Day River - upper middle fork	11	9							9								2 0.1818	1.000
		OMY044	Granite	2	2							2								0 0.0000	1.000
		OMY045 OMY046	North Fork John Day River Big Wall	6 2	6							6								0 0.0000 0 0.0000	1.000
		OMY047	Deer Creek	2								1								1 0.5000	1.000
		OMY048 OMY049	Murderers Creek Rock Creek	2 13	2 10							2	1		1	1				0 0.0000 3 0.2308	1.000 0.700
		OMY050	Squaw Creek	14	11					<u> </u>	<u> </u>	11			±	-				3 0.2143	1.000
Inland	07_MGILCS	OMY051 OMY052	Iskuulpa Creek Umatilla River	15 3	13					<u> </u>	+	13								2 0.1333 2 0.6667	1.000
		OMY053	Touchet River	9	9						<u> </u>	9								0 0.0000	1.000
		OMY054 OMY055	Alpowa Creek Asotin Creek	10 19	9 10							7 10			2					1 0.1000 9 0.4737	0.778
		OMY056	Tucannon River	11	8					<u> </u>	+	7						1		3 0.2727	0.875
		OMY057 OMY058	Joseph Creek Little Minam River	10 5	<u>10</u> 5					<u> </u>		10							+ +	0 0.0000 0 0.0000	1.000
		OMY059	Menatchee Creek	7	5					<u> </u>	<u> </u>	5							1 1	2 0.2857	1.000
		OMY060 OMY061	Upper Grand Ronde River	16 12	14						+	13 7	1						1	2 0.1250 4 0.3333	0.929 0.875
		OMY061 OMY062	Wallowa River Wenaha River	12 19	-					<u> </u>	<u> </u>	13	1					1		4 0.3333 5 0.2632	0.929
		OMY063	Big Sheep Creek	18	16							16							4	2 0.1111	1.000
		OMY065 OMY066	Lightning Creek Upper Imnaha River	4 5	4 3					<u>+</u>	<u> </u>	3		1						0 0.0000 2 0.4000	0.750
		OMY067	Big Bear Creek	25								20			1					4 0.1600	0.952
		OMY068 OMY069	East Fork Potlatch River Lapwai Creek	16 16	12 9					+	+	11 9			1					4 0.2500 7 0.4375	0.917
		OMY072	West Fork Potlatch River	8	7						1	7								1 0.1250	1.000
		OMY073 OMY074	Little Salmon River Slate Creek	15 8	7 6					+	+	6 6							1 1	8 0.5333 2 0.2500	0.857
			Reporting Group total		271	0	0	0	0	0	0	250	3	1	5	1	0	2		79 0.2257	0.923
			Naches River - Rattlesnake			0	U	0							5	1	0	<u>۲</u>			
		OMY075	Creek	4	2					+	+	1	1							2 0.5000	0.500
		OMY076 OMY077	Naches River - Nile Creek Naches River - Pileup Creek	6	4 3					+	+	1	4							2 0.3333 0 0.0000	0.667
		OMY077 OMY078	Naches River - Quartz Creek	3	3					+	+	1	2							0 0.0000	0.667
			North Fork Little Naches		4						1	1									
	08_YAKIMA	OMY079 OMY080	River Satus Creek	2	2					+	+	+	1							1 0.5000 3 0.6000	1.000
Inland	00 17 11 11 11	5	Toppenish Creek	3	3								3							0 0.0000	1.000
Inland	00_1/ 4410/	OMY081		1		1			1		1	1	1				İ			2 0.5000	0.500
Inland		OMY081 OMY081.2	Ahtanum Creek	4	2	_				1		-	L						L	2 0.5000	0.500
Inland		OMY081.2 OMY081.3	Yakima River - Big Creek	4	4						<u> </u>		4						1 1	0 0.0000	1.000
Inland		OMY081.2								 	<u> </u>	2	-						1 1		

				1	1	1	1	1	l							1				
		Reporting Grou	p total 48	8 36	0	0	0	0	1	0	7	28	0	0	0	0	0	0	12 0.2500	0.778
		OMY082 Chiwaukum Creek	5	5 1									1						4 0.8000	1.000
		OMY083 Upper Chiwaukum Cr		2							1		1						1 0.3333	0.500
		OMY084 Nason River	2								1								1 0.5000	0.000
Inland	09_UPPCOL	OMY085 Entiat River	19								10		2		1				6 0.3158	0.154
		OMY086 Methow River	9								1		2		1				6 0.6667 7 0.7778	0.333
		OMY088 Omak River	9	2									2						7 0.7778	1.000
		Reporting Grou	p total 47	7 22	0	0	0	0	0	0	13	0	7	0	2	0	0	0	25 0.5319	0.318
		OMY070 Lolo Creek	9	6										5	1				3 0.3333	0.833
		OMY090 Clear Creek	5	3										3					2 0.4000	1.000
		OMY091 Crooked River	14	4 14							1			11	2				0 0.0000	0.786
Inland	10_SFCLWR	OMY092 Newsome Creek	10	0 9										9					1 0.1000	1.000
		OMY093 Tenmile Creek	5											2	1				2 0.4000	0.667
					_				<u> </u>	•		_		20		_	•	•	0 0 1000	
		Reporting Grou OMY094 Bear Creek	p total 43		0	0	0	0	0	0	1	0	0	30	4	0	0	0	8 0.1860 0 0.0000	0.857 1.000
		OMY095 Lower Selway River	2:												20				1 0.0476	1.000
		OMY096 Middle Lochsa River	15								1				13				1 0.0667	0.929
Inland		OMY097 Middle Lochsa River	14								1				13				0 0.0000	0.929
manu	11_UPCLWR	OMY098 Upper Lochsa River	13											1	12				0 0.0000	0.923
		OMY099 Upper Lochsa River	25	5 24											24				1 0.0400	1.000
		Demonting Cree		- 03	0	0	0	0		0	2	0	0		80		0	0	2 0.0216	0.007
		Reporting Grou East Fork South Fork		5 92	0	U	U	0	0	U	2	U	U	L	89	0	0	0	3 0.0316	0.967
		OMY100 River	14	4 10												10			4 0.2857	1.000
		OMY101 Secesh River	22	1 18												18			3 0.1429	1.000
Inland	12_SFSALM	OMY102 South Fork Salmon Ri														5			0 0.0000	1.000
											_									
		Reporting Grou	-		0	0	0	0	0	0	0	0	0	0	0	33	0	0	7 0.1750	1.000
		OMY103 Bear Valley Creek	17								1						16		0 0.0000	0.941
		OMY104 Big Creek	22	2 21							1						20		1 0.0455	0.952
		OMY105 Camas Creek	10	0 8												1	7		2 0.2000	0.875
		OMY106 Chamberlain Creek	19	9 18							1						17		1 0.0526	0.944
Inland	13_MFSALM	OMY107 Loon Creek	13	3 13							1						12		0 0.0000	0.923
		OMY108 Marsh Creek	20	0 13													13		7 0.3500	1.000
		OMY109 Middle Fork Salmon F	liver 23	3 21							2						19		2 0.0870	0.905
		Reporting Grou	in total 13	.4 111	0	0	0	0	0	0	6	0	0	0	0	1	104	0	13 0.1048	0.937
		OMY110 Herd Creek			0	0	0	0	0	0	1	0	0		0	1	104	6	2 0.2222	0.857
			9					+											5 0.5556	0.857
											1							3		
		OMY112 Morgan Creek	6								1							4	1 0.1667	0.800
Inland	14_UPSALM	OMY113 North Fork Salmon Ri						+			2							2	6 0.6000	0.500
		OMY114 Pahsimeroi River	10								1							5	4 0.4000	0.833
		OMY115 Sawtooth Hatchery	32	2 14							3							11	18 0.5625	0.786
		Reporting Grou	p total 70	6 40	0	0	0	0	0	0	9	0	0	0	0	0	0	31	36 0.4737	0.775

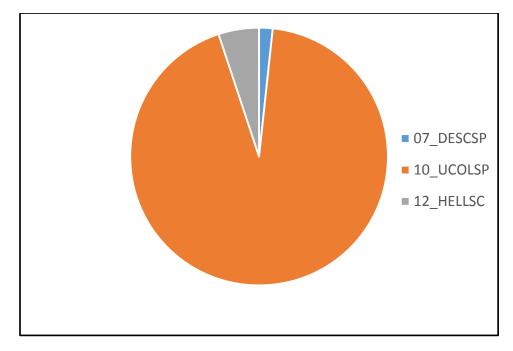
- 863 **Results**
- 864

865 *Parentage based tagging assignments of Chinook salmon in harvest mixtures*

Of the 4,354 harvest Chinook analyzed, PBT identified 1,169 hatchery-origin individuals 867 that could be confidently assigned back to 44 hatchery broodstock sources (i.e., 30 Snake River 868 hatcheries and 14 Columbia River hatcheries) spawned in 2010-2012 (Table 13). The majority 869 870 of PBT assigned individuals (83.32%) were from the 2011 brood year (i.e., 4-years-old), with a smaller fraction represented by 3-year-old (brood year 2012; 13.86%) and 5-year-old (brood year 871 872 2010; 2.82%) fish. Of the 4-year-old fish, the majority (29.77%) were assigned to the Rapid River Fish Hatchery, followed by the McCall Fish hatchery (17.04%) and Dworshak National 873 Fish Hatchery (16.53%) – all from the Snake River drainage. Relatively few 4-year-old fish were 874 assigned to hatcheries in the Columbia River (2.57%; Klickitat Fish Hatchery). 875

- 876
- 877
- 878 879

3 Wind River spring-run Chinook salmon sport harvest


Both PBT and GSI assignments were used to analyze the Wind River spring-run Chinook 880 salmon mark-selective sport fishery. We estimated stock composition to investigate how 881 expansion of the Chinook salmon sport fishing "bubble" boundary around the mouth of the Wind 882 River may be affecting proportions of non-local (i.e., Carson Hatchery) Chinook salmon that are 883 harvested by using the context of stock proportions in other spring management period fisheries 884 and at Bonneville Dam. None of the samples from the Wind River sport mark-selective fishery 885 assigned via PBT. Although we expect that Chinook salmon harvested in this fishery will assign 886 to the Carson hatchery, our PBT baseline for Carson hatchery broodstocks only extends back to 887 888 2012 (Table 3) and we were only likely to be able to assign jacks from the 2015 fishery; the 2016 fishery is likely the first year in which PBT assignments will be detected. 889

We also applied GSI to examine the stock composition of the Wind River fishery. We 890 891 found that the 10_UCOLSP reporting group (includes upper Columbia River hatcheries as well as Carson Hatchery, Walla Walla Hatchery, and Umatilla Hatcheries) represented the greatest 892 proportion of harvest (94.8%) followed to a much lesser extent by the 12_HELLSC (5.17%) and 893 894 07 DESCP (1.72%) reporting groups (Figure 8). Assignment of the 12 HELLSC genetic stock can be the result of misassignment that occurs between the two genetically similar stocks: 895 Carson_H/10_UCOLSP vs. 12_HELLSC. This misassignment is known to occur based on 896 comparisons of GSI results and coded wire tags. For example, in 2014 there were 20 coded wire 897 tags that were analyzed with PBT and GSI in the Wind River harvest. Of these 20 coded wire 898 tag origins, 18 of them were concordant with GSI/PBT assignments (90% concordance rate). 899 900 The two misassignments occurred between 10 UCOLSP vs. 12 HELLSC stocks. Similarly, in 2013, there were 12 coded wire tags that were analyzed with GSI and represented in the Wind 901 River harvest. Of these 12 coded wire tag origins, nine of them were concordant with the GSI 902 assignment estimates (75% concordance rate). The three misassignments occurred between 903 904 those same two stocks.

Table 13: Summary information on the number and origin of PBT assigned Chinook salmon in 2015 fishery mixtures. HOR= hatchery origin (i.e., adipose-clipped), NOR=na
 and fall harvests.

						Spri	ng harv					Fall harvest						Total										
				PBT	Commencial	Curant			Tribal	Comment		Curant	T	: la l	Commercial Sport Tribal						Commercial Sport Test Tribal							
Ustabony	Stock	Hatchery	Hatchery	tag	Commercial HOR	Sport HOR	Te HOR		Ceremonial HOR NOR			Sport HOR NOR		ibal		T		NOR	Г Г		HOR		HOR I		Tes HOR		Tribal IOR NC	Grand
Hatchery	Mixed origins (Snake and	location	broodstock	rate	HUK	пок	HUR	NOR		HOR	NOR	HOK NOK	HUK	NUK	HUK	NOR	HUK	NOR	HOR	NUK	HUK	NUK		NUK	HUR			DR total
Correct National Fish Ustaham	Mid-/Upper Columbia	Columbia Divor	0+++CAD12	0.9000	-	-							1								F	0	-	0	0	0	1	0 12
Carson National Fish Hatchery	Rivers)	Columbia River	OtsCAR12 OtsCLWH11S	0.9000	5	/	5						3								5		7 33	0		0	_	0 13 0 57
Cleawater Fish Hatchery	South Fork Clearwater River	Snake River	OtsCLWH11S OtsCLWH12S	0.9615	16	33	5						3								16	0	33	0	5	0		0 57
Lookingglass Fish Hatchery	Catherine Creek	Snake River	OtsCTHW11S	0.9216	3	2			1												3		0	0	0	0	1	0 1
			OtsDWOR10S	0.9210	5	2			1												5		2	0	0	0	1	0 4
Dworshak National Fish	Clearwater River	Snake River	OtsDWOR105	0.9899	28	76	15		11 1	2		4	22	2							30	0	80	0	15	0	33	3 161
Hatchery		Shake Kiver	OtsDWOR113	0.9899	12	12	15		11 1	2		4	3	2							12	0	12	0	0	0		0 27
Lookingglass Fish Hatchery	Grande Ronde River	Snake River	OtsGRUW11S	0.9920	12	12	1						5	1							1	0	12	0	1	0	0	$\frac{0}{1}$
Lookingglass Fish Hatchery	Imnaha River	Snake River	OtsIMNW11S	0.9955	27	20		1		3		7	14	L							30		27	0	1	1	14	0 72
			OtsJHNW11S	1	27	20		T		5		/	14	6							0		0	0	0	1		6 7
McCall Fish hatchery	Johnson Creek	Snake River		0.9747	1								T	0							1		0	0	0	0	1	
Klickitat Fish Hatchery	Klickitat River	Columbia River	OtsKH10S	0.9746	1	6	2						6								11		0	0	0	0	0	
KIICKITAL FISH HATCHELY			OtsKH11S	0.8072	11	6	2						6								11	0	6	0	2	0	•	0 25
			OtsKH12S	0.8300	1	10															1	0	0	0	0	0	•	0 1
Lookingglass Fish Hatchery	Lookingglass Creek	Snake River	OtsLOOK11S	0.9747	5	10			1				-								5		10	0	0	0	-	0 16
			OtsLOOK12S	0.9835	4	_	1					2	3								4	0	2	0	1	0		0 10
Lookingglass Fish Hatchery	Lostine River	Snake River	OtsLSTW10S	0.9434	1																1	0	0	0	0	0	0	0 1
			OtsLSTW11S	0.9153	10																10	0	0	0	0	0	0	0 10
	Mixed origins (Snake and		OtsLYON11S	0.8988											2		1		2	4	2	0	1	0	0	0	2	4 9
Lyons Ferry Fish Hatchery	Upper Columbia Rivers)		OtsLYON12S	0.9523				1													0	0	0	0	0	1	0	0 1
			OtsLYON12S_1	0.9860		_										1			1	1	0	1	0	0	0	0	1	1 3
	OtsMCCA10S 0.9958 3 2 .	0	2	0	0	0	0	1 6																				
McCall Fish hatchery	South Fork Salmon River	Snake River	OtsMCCA11S		46	42	2	1		9	1	16	31	18							55	1	58	0	2	1	31 2	18 166
			OtsMCCA12S	0.9710		2				1		3 1	1	1							1	0	5	1	0	0	1	1 9
Methow Fish Hatchery	Upper Methow and Twisp Rivers	Columbia River	OtsMETH12	0.9300	1								1								1	0	0	0	0	0	1	0 2
	Mixed origins (Snake and																											
Perce Tribal Hatchery	Clearwater River)	Snake River	OtsNPFH12S_1	0.9937												1		1		3	0	1	0	1	0	0	0	3 5
Pahsimeroi Hatchery	Salmon River	Snake River	OtsPAHH11S	0.9662	18	16				1		6	7	1							19	0	22	0	0	0	7	1 49
Parkdale Fish Facility	Hood River	Columbia River	OtsPFF12	0.8900	3	1						2									3	0	3	0	0	0	0	0 6
Clearwater Fish Hatchery-	Lochsa River	Snake River	OtsPOWP11S	0.9869	15	30	7	1	4 3				2								15	0	30	0	7	1	6	3 62
Powell Facility		Shake Kivel	OtsPOWP12S	0.9866	7	1							3								7	0	1	0	0	0	3	0 11
	Mixed origins (Mid-/Upper																											
Priest Rapids Hatchery	Columbia Rivers)	Columbia River	OtsPRH12	0.6264											3	2	6	1	3	4	3	2	6	1	0	0	3	4 19
Yakama Nation Prosser	Mixed origins (Little White		0100000	0.0050																	0	0		0	0			
Hatchery	Salmon and Yakima Rivers)	Columbia River	OtsPRO12	0.8950																1	0	0	0	0	0	0	0	$\frac{1}{2}$ 1
			OtsRAPH10S	0.9898	1	9	1		1												1	0	9	0	1	0	_	0 12
Rapid River Fish Hatchery	Rapid River	Snake River	OtsRAPH11S	0.9835	51	170	34	1	20				14								51	0	170	0	34	1	34	0 290
			OtsRAPH12S	0.9536	8	6															8	0	6	0	0	0		0 14
Round Butte Fish Hatchery	Deschutes River	Columbia River	OtsRB12	0.9200							1	1									0		1	0	0	0	0	0 2
			OtsSAWT10S	0.9944	2	3															2	0	3	0	0	0	0	0 5
Sawtooth Fish Hatchery	Salmon River	Snake River	OtsSAWT11S	0.9697	12	10							16	4							12	0	10	0	0	0	16	4 42
			OtsSAWT12S	0.9369	2	3				2		3	5	1							4	0	6	0	0	0	5	1 16
Tucannon Fish Hatchery	Tucannon River	Snake River	OtsTUCW12S	0.9523										1							0	0	0	0	0	0	0	1 1
Umatilla Hatchery - Three Mile	Umatilla River	Columbia River	OtsUMA12_sp	0.9200	3	1	1							1							3	0	1	0	1	0	0	1 6
Dam	Little White Salmon River	Columbia River	OtsUMA12_sufa												2	ļ	2				2	0	2	0	0	0	0	0 4
Wells Fish Hatchery	Upper Columbia River	Columbia River	OtsWELLS12	0.9947		_						1	1								0	0	1	0	0	0	1	0 2
Warm Spring National Fish	Desebutes Diver	Columbia Diver	OtoN/CNIEU 4.2	0.0000																								
Hatchery	Deschutes River	Columbia River	OtsWSNFH12	0.6000	3	2															3		0	0	0	0	0	0 3
Yakima River Fish Hatchery	ſ	Columbia River	OtsYR12	0.9937		2								<u> </u>	1						1	0	2	0	U	U	U	0 3

-natural origin (adipose non-clipped).	HOR and NOR categories could be separated for	various fisheries during spring, summer

909

910 This analysis cannot currently quantify Carson Hatchery fish that are harvested in the bubble fishery, nor can it determine how many wild fish from other areas are handled in the 911 fishery. Further, we cannot conclude whether changing the bubble fishery boundary has resulted 912 in any change in impacts compared to previous years with the smaller bubble, because we did 913 914 not sample in years prior to the bubble expansion.

- 915

916 Comparison of stock composition among spring management period Chinook salmon fisheries 917

Analysis of adipose-clipped Chinook salmon from multiple fishery mixtures in the spring 918 management period (April to June 15th) identified relatively larger proportions of individuals that 919 assigned via PBT to Snake River hatcheries. With the exception of the Wind River sport mark-920 selective harvest, Chinook salmon from Snake River hatcheries comprised the largest component 921 of each harvest, and accounted for 37-43% of fish harvested in Region B, and 39-64% of fish 922 923 harvested in Region A from commercial, sport, and Test fisheries (Figure 9). Chinook salmon from Snake River hatcheries also comprised the largest fraction of fish taken in Tribal 924 ceremonial (55%) and Tribal harvest (62%) fisheries in Zone 6 (Figure 9). These proportions are 925 broadly consistent with the large proportion of hatchery origin Chinook salmon passing 926 Bonneville Dam in 2015 that assigned via PBT to Snake River hatcheries (58%). As noted in the 927 previous section, and unlike the other fisheries assessed, the Wind River sport fishery was not 928 929 composed primarily of fish from Snake River hatcheries, but rather of fish that assigned via GSI to Columbia River reporting groups (Figure 9); primarily 10_UCOLSP (Figure 8). PBT 930 assignments to Columbia River hatcheries ranged from 0-5.5% and reflect the incomplete nature 931 of our PBT baseline for Columbia River hatchery broodstocks (i.e., for several Columbia River 932 hatcheries we are currently only able to assign jacks and 4-year-old fish). However, our PBT 933

baselines for Columbia River broodstocks are expanding, and we will be able to assign hatcheryorigin fish to additional Columbia River hatcheries in the near future.

936

937 Chinook from the interior ocean type lineage (OT) comprised a small fraction (0-8.5%)of Chinook salmon taken in spring harvests, and approximated that encountered passing 938 Bonneville Dam (3.5%) during the spring management period (Figure 9). With the exception of 939 940 the Wind River sport mark-selective harvest, Chinook from the interior stream type lineage (ST) 941 comprised 19-45% of harvest samples, and approximated that observed at Bonneville Dam during the spring management period. We observed a steady decrease in the proportion of 942 943 harvests comprised of the lower Columbia (LC) Chinook lineage up to Bonneville Dam (Figure 9). The proportion of LC lineage Chinook in Region B fisheries was 28-34%. This decreased to 944 2-21% for Region A fisheries, and to 0.1% at Bonneville Dam. No LC lineage Chinook were 945 taken in Zone 6 Tribal fisheries above Bonneville Dam during the spring management period 946 (Figure 9). 947

948

Analysis of adipose-intact fisheries revealed that PBT assignments to Snake River 949 hatcheries represented 22-34% of the fish harvested (Figure 10); a lower fraction than that 950 observed for comparable adipose-clipped fisheries (as expected) (Figure 9), but consistent with 951 assignments for adipose intact fish passing Bonneville Dam (20%). The LC lineage was only 952 encountered in the test fishery during the spring management period, and the OT lineage was 953 only observed at Bonneville Dam and in the Zone 6 tribal harvest. The ST lineage comprised the 954 greatest proportion of adipose-intact fisheries (45-75%), and approximated that encountered at 955 Bonneville Dam during the spring management period (Figure 10). 956

957 958

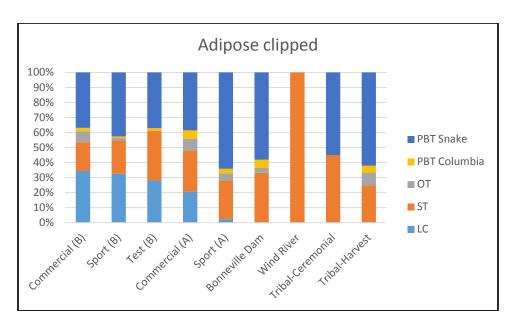


Figure 9: Stock composition of spring management period adipose-clipped Chinook salmon
harvest mixtures. 'PBT Snake' and 'PBT Columbia' include assignments to all Snake River and
Columbia River hatcheries that are in our PBT baseline. Interior ocean type (OT), interior stream
type (ST), and lower Columbia lineage include GSI assignments to reporting groups within our
GSI baseline.

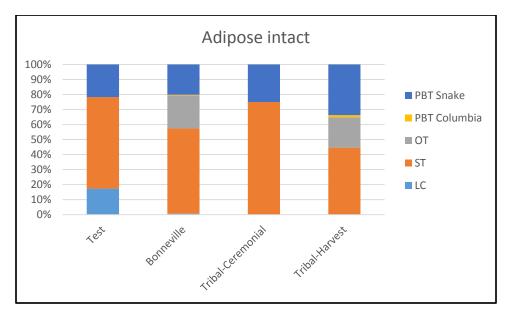


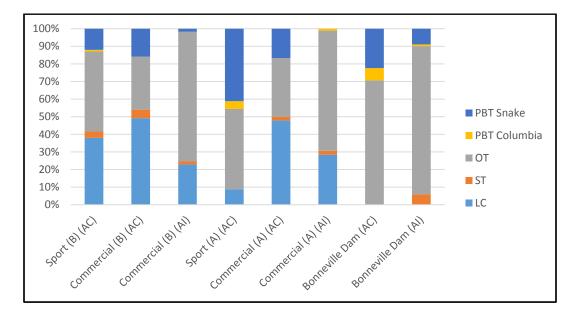
Figure 10: Stock composition of spring management period adipose-intact Chinook salmon
harvest mixtures. 'PBT Snake' and 'PBT Columbia' include assignments to all Snake River and
Columbia River hatcheries that are in our PBT baseline. Interior ocean type (OT), interior stream
type (ST), and lower Columbia lineage include GSI assignments to reporting groups within our
GSI baseline.

971 972

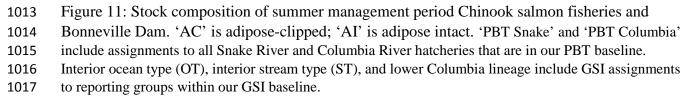
973 Comparison of percent stock composition of upriver spring Chinook salmon stocks (ST) among
974 summer-management period Chinook salmon fisheries

975

976 Analysis of Chinook salmon fisheries in the summer management period (June 16 -August 1) addressed the following objectives: 1) estimate stock composition for the mark 977 selective sport fishery and commercial fishery below Bonneville Dam, 2) compare stock 978 979 composition of adipose-clipped versus adipose-intact fish from the commercial harvest below Bonneville Dam, 3) characterize temporal changes in stock composition across the season. 980 While jack Chinook salmon are not harvested at high rates in fisheries and there are no specific 981 harvest limits for them, jack Chinook salmon if sampled could have been incorporated into this 982 983 analysis. 984


We observed similar stock compositions for adipose-clipped Chinook salmon taken in 985 Lower Columbia River sport and commercial fisheries from Region B (Figure 11). However, 986 Chinook stocks from the OT lineage comprised a greater proportion of the sport harvest (45%) 987 than the commercial fishery (30%); a similar pattern was observed for Region A (46% vs. 33%, 988 respectively). Additionally, while Chinook salmon stocks from the LC lineage comprised a 989 slighter greater proportion of the commercial harvest (49%) in Region B than the sport fishery 990 (38%), this difference was greater in region A (48% vs. 9%, respectively). A similar proportion 991 of adipose-clipped fish from Region B sport (12%) and commercial (16%) fisheries assigned to 992 Snake River hatcheries (Figure 11). However, for Region A, a greater proportion of adipose-993

clipped fish from the sport harvest assigned to Snake River hatcheries (41%) compared to the
commercial harvest (17%). We observed no appreciable differences between these fisheries
(either within or between regions) in the relative proportion of fish assigned to Columbia River
hatcheries or stocks from the ST lineage (Figure 11).

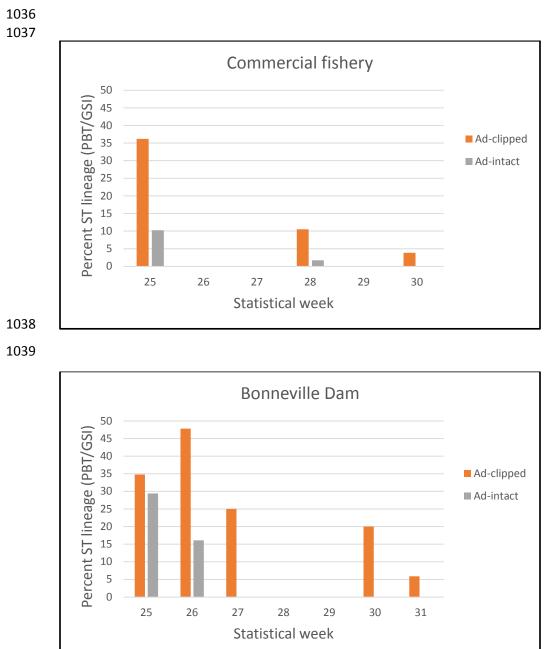

998 We observed notable differences in the stock composition of adipose-clipped and 999 adipose-intact Chinook salmon taken in the commercial fishery below Bonneville Dam. These differences were consistent across regions (Figure 11). As expected, a greater proportion of 1000 1001 adipose-clipped fish harvested in the commercial fishery assigned to Snake River hatcheries (16-17%) than adipose-intact fish (0-2%). Similarly, a greater proportion of the adipose-clipped 1002 harvest from the commercial fishery assigned to stocks from the LC lineage (48-49%) than 1003 adipose-intact fish (23-28%). However, we also observed that a smaller proportion of the 1004 adipose-clipped commercial harvest was comprised of the OT lineage (30-33%) than the 1005 adipose-intact harvest (68-74%) (Figure 11). We observed no appreciable differences between 1006 the adipose-clipped and adipose-intact commercial harvest (either within or between regions) in 1007 the relative proportion of fish assigned to Columbia River hatcheries or stocks from the ST 1008 1009 lineage (Figure 11).

1010

1011

1012

1019 We compared changes in the % stock composition of the stream-type lineage of adiposeclipped vs. adipose-intact Chinook salmon over the course of the summer management period in 1020 1021 the lower Columbia River commercial fishery relative to that passing Bonneville Dam. We detected declines in the proportion of ST lineage Chinook salmon, for both adipose-clipped and 1022 adipose-intact fish, in the commercial harvest and at Bonneville Dam over the summer 1023 1024 management period (Figure 12). However, there was a modest increase in the proportion of the 1025 ST lineage for adipose-clipped fish at Bonneville Dam in statistical week 26. Meaningful comparisons are made challenging by the absence of data continuity over the time series owing 1026 to fisheries closures and cessation of sampling at the Bonneville AFF in response to elevated 1027 water temperatures. 1028


- 1029
- 1030

1031

1032 We estimated stock composition of the mark selective sport fishery in the lower

Stock composition of the fall-run mark-selective Chinook salmon sport fishery

- Columbia River in 2015. Major reporting groups in order of decreasing proportion were: 1033
- 18_UCOLSF (73%), 03_WCASFA (12%), 19_SRFALL (9%), 05_SPCRTU (6%) (Figure 13). 1034
- 1035 These results are broadly consistent with the 2014 fall sport harvest.

1041 Figure 12: Temporal patterns of the percent of Chinook salmon ST lineage in adipose-clipped

and adipose intact mixture samples from the lower Columbia River commercial fishery (top

panel) and Bonneville Dam (bottom panel) during the summer management period (June 16-August 31).

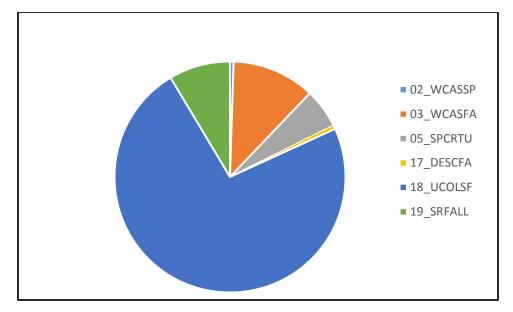


Figure 13: Genetic stock composition of the lower Columbia River fall-run mark-selective
Chinook salmon sport harvest in 2015. Note: the assignment of West Cascade spring stock
(02_WCASSP) may owe to misassignment between the spring and fall runs from that region,
strays from the net pen rearing at Youngs Bay, or other unknown reasons.

1050

1057

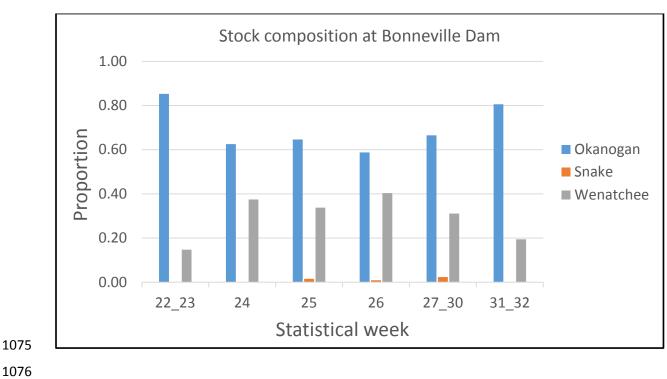
1051 Comparison of stock composition among sockeye salmon fisheries

Sockeye salmon were sampled from the lower Columbia River below Bonneville Dam in
the lower river sport and commercial fishery and Zone 6 tribal fishery, and were assigned to
three Columbia River genetic stocks (Table 14). The Zone 6 sport fishery was not sampled. Low
sample numbers of Snake River sockeye make it difficult to estimate narrow confidence intervals
for estimates of this stock (Table 15).

The timing of the sockeye salmon fisheries may influence the harvested proportion of 1058 each stock, and is consistent with run-timing distributions observed in our previous reports, 1059 particularly that the Wenatchee stock has relatively early run-timing compared to other stocks. 1060 The Snake River stock was only represented by 38 fish in the Zone 6 fishery samples (Table 14) 1061 making run-timing estimates imprecise for this stock. Of the 38 Snake River sockeye salmon 1062 1063 identified with GSI, the largest number (20) were sampled in week 28 and they were estimated to be in highest relative stock proportion (4.7%) in that same week (Figure 14). Week 26 had the 1064 highest proportions of Wenatchee stock (Figure 14). Notable differences in stock representation 1065 between Bonneville Dam and the Zone 6 tribal harvest were observed for the Wenatchee stock 1066 (44 vs. 35%) and for the Okanogan stock (55 vs. 63%) in the harvest vs. Bonneville Dam 1067 mixture samples, respectively (Table 15). 1068

					Statis	tical w	eek			
Fishery	Stock	24	25	26	27	28	29	30	31	32
Commercial	Okanogan	2	14	27	0	17	8	3	0	0
	Snake	0	1	1	0	1	0	0	0	0
	Wenatchee	1	7	13	0	8	4	1	0	0
Sport	Okanogan	1	24	9	13	8	0	1	0	0
	Snake	0	0	0	0	0	0	0	0	0
	Wenatchee	1	21	8	12	7	0	0	0	0
Zone 6	Okanogan	0	162	88	188	243	135	56	2	0
	Snake	0	0	1	4	20	9	4	0	0
	Wenatchee	0	91	105	156	166	73	32	1	0

1069 Table 14: Summary of sample sizes and stock assignments for sockeye salmon fisheries by weekly strata.


1070

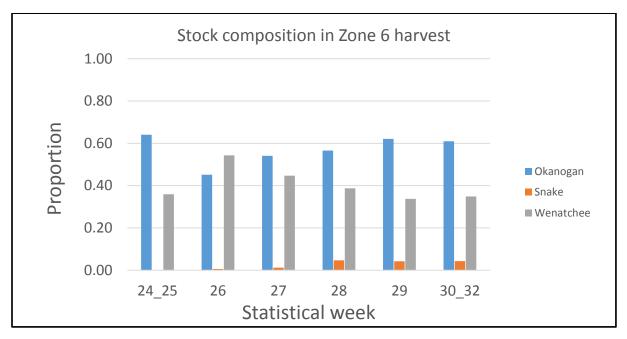

1071

Table 15: Comparison of stock-specific abundance and percent composition among sockeye salmon fisheries. The mean stock
 abundance estimate is provided for each fishery harvest and includes 95% confidence intervals.

		Stock proportion						
Mixture source	Wenatchee	Okanagan	Snake	Wenatchee	Okanagan	Snake		
Commercial	139 (99 – 181)	293 (251 - 333)	13 (0 – 29)	31.27%	65.90%	2.83%		
Sport	478 (380 - 574)	544 (448 - 643)	10 (0 – 29)	46.30%	52.75%	0.95%		
Zone 6	13,142 (12,336 - 14,026)	16,407 (15,525 – 17,191)	546 (368 - 739)	43.67%	54.52%	1.81%		
Total Harvest	13,759 (13,025 – 14,480)	17,244 (16,522 – 17,959)	569 (351 - 824)	40.51%	56.72%	2.76%		
Bonneville Dam	178,325 (159,747 - 198,421)	323,797 (302,554 - 342,981)	7919 (2,949 – 13,906)	34.96%	63.48%	1.55%		

1078 Figure 14: Stock composition of sockeye salmon at Bonneville Dam (top panel) and in the Zone1079 6 tribal harvest (bottom panel) across weekly strata.

1083 Discussion

1084

1085 Management implications

1086 This study utilized both genetic stock identification (GSI) and parentage based tagging (PBT) in combination to estimate stock composition of mainstem Columbia River Chinook 1087 salmon and sockeye fisheries. This is the third year in which we were able to assign all three 1088 1089 major age classes of spring Chinook from Snake River hatcheries and the first year in which we 1090 could assign 3-year old fish to Columbia River hatcheries as a consequence of our expanded PBT baseline. Ongoing expansion of the PBT baseline will allow us the ability to assign Snake 1091 1092 River hatchery jacks of the fall-run Chinook salmon as well as all other hatchery jacks originating above Bonneville Dam (migration year 2016), and so future years of analyses will 1093 include more emphasis on fall-run harvest. Expansion of the PBT baseline to include not only 1094 hatcheries of Chinook salmon and steelhead above Bonneville Dam, but also hatcheries 1095 throughout the range of these species could eventually lead to replacing the coded wire tag 1096 program for monitoring of in-river harvest stock composition of these species if increases in 1097 1098 funding were available and fishery managers thought it were needed. This report includes the third genetic analysis on sockeye salmon harvest. Our results demonstrated differences in stock 1099 composition of the sockeye salmon harvest as compared to the total run estimated at Bonneville 1100 Dam, but there are questions about the validity of the estimates especially at Bonneville given 1101 the potential for sampling error around rare stocks like Snake R. sockeye salmon. We will 1102 continue to perform GSI on sockeye salmon harvest in the future to gain further insight into these 1103 patterns. 1104

- 1105
- 1106
- 1107
- 1108 1109

One higher level management question was possible to address in this section:
 1) Harvest RM&E: F&W Program Management Question: What are your in-river monitoring results and what are your estimates of stock composition and stock-

specific abundance, escapement, catch, and age distribution?

1110 The in-river estimates of stock composition, stock-specific abundance, escapement, 1111 catch, and age distribution were addressed for part of the treaty mainstem spring-management 1112 period fisheries Chinook salmon harvests above Bonneville Dam along with fisheries below 1113 Bonneville Dam, the non-treaty summer-management fisheries below Bonneville Dam which are 1114 a portion of the total non-treaty summer fisheries, and the mainstem treaty sockeye salmon 1115 harvests above and non-treaty harvest below Bonneville Dam. For the spring management 1116 period of Chinook salmon, we continue to observe a spatial pattern for the stock composition of 1117 lower Columbia River stocks which appear more abundant downstream from the Willamette 1118 River mouth as compared to upstream of this point which is consistent with a long history of 1119 1120 CWT data. We observed differences in the composition of hatchery stocks represented in spring vs. summer management period harvest of Chinook salmon, and run-timing plays an important 1121 role in this difference (i.e., late-running stocks appear more abundant among the upriver spring-1122 type lineage that are caught in the summer management period). This pattern is consistent when 1123 compared to known origin PIT tagged adult and jack fish tagged as juveniles. Known origin 1124 adult age upriver spring and Snake River spring Chinook salmon are almost all past Bonneville 1125 by June 15 in most years. However, specific conclusions relative to the harvest impacts on spring 1126 1127 run Chinook salmon cannot be made from this genetic analysis as jacks are included in the current study. 1128

1129 1130 This study also addressed some issues that relate to mark-selective fisheries. For example, we examined stock composition of the Wind River mark-selective spring-run Chinook 1131 1132 salmon sport fishery and provided context of stock composition observed among other fisheries during this management period. The number of PBT-assigned Snake R. fish that were harvested 1133 in the Wind River sport fishery was less than all other fishery samples we analyzed, including 1134 1135 the adipose-intact samples from Bonneville Dam and tribal harvests during the same set of weeks. For the 2016 analyses, our Columbia River PBT baseline should be sufficient to assign 4 1136 year old fish from the Wind River sport fishery to the Carson hatchery. It was not possible to 1137 1138 conclude whether or not the Wind River sport fishery harvest composition has significantly changed through time given this boundary change. 1139

1140 The sockeye salmon tribal fishery is managed in a way that attempts to harvest as many 1141 harvestable sockeye salmon as possible under the allowed harvest rate schedule in the U.S. v. 1142 Oregon Management Agreement. This 2015 year of analysis of the sockeye salmon harvest 1143 corroborates our 2014 and 2013 harvest analyses, which suggested there may be some over 1144 representation of the Wenatchee sockeye stocks in the Zone 6 harvest as compared to the stock 1145 proportions that are present at Bonneville Dam. The results for Snake River sockeye salmon are 1146 dependent upon representative sampling at Bonneville Dam, but low sample rate and the rarity of 1147 this stock led to uncertainty and high variation around estimates of Snake River sockeye salmon 1148 from Bonneville Dam. Sampling protocols at Bonneville Dam may have higher representation of 1149 young fish as compared to harvest mixtures. Timing of the fishery may also influence the 1150 proportion of each stock, and is consistent with run-timing distributions we observed in previous 1151 reports; the Wenatchee stock has relatively early run-timing but the timing of the Snake River 1152 stock is uncertain due to inconsistent results between PIT-tag and GSI methods. Future analysis 1153 1154 will be needed to examine these patterns for consistency and delve into explanations. 1155

1156	References
1157	Anderson, E. C., R. S. Waples, and S. T. Kalinowski. 2008. An improved method for estimating
1158	the accuracy of genetic stock identification. Canadian Journal of Fisheries and Aquatic
1159	Sciences 65:1475-1486.
1160	
1161	Anderson E. C. 2010. Computational algorithms and user-friendly software for parentage-based
1162	tagging of Pacific salmonids. Final report submitted to the Pacific Salmon Commission's
1163	Chinook Technical Committee (US Section). 46 p.
1164	http://swfsc.noaa.gov/textblock.aspx?Division=FED&ParentMenuId=54&id=16021.
1165	
1166	Beacham, T. D., J. R. Candy, K. L. Jonsen, J. Supernault, M. Wetklo, L. T. Deng, K. M. Miller,
1167	R. E. Withler, and N. Varnavskaya. 2006. Estimation of stock composition and individual
1168	identification of Chinook salmon across the Pacific Rim by use of microsatellite
1169	variation. Transactions of the American Fisheries Society 135(4):861-888.
1170	Beacham, T. D., B. McIntosh, and C.G. Wallace. 2011. A comparison of polymorphism of
1171	genetic markers and population sample sizes required for mixed-stock analysis of
1172	sockeye salmon (Oncorhynchus nerka) in British Columbia. Canadian Journal of
1173	Fisheries and Aquatic Sciences, 2011, 68(3): 550-562.
1174	Blankenship, S. M., M. R. Campbell, J. E. Hess, M. A. Hess, T. W. Kassler, C. C. Kozfkay, A.
1175	P. Matala, S. R. Narum, M. M. Paquin, M. P. Small, J. J. Stephenson, K. I. Warheit and
1176	P. Moran. 2011. Major Lineages and Metapopulations in Columbia River Oncorhynchus
1177	mykiss Are Structured by Dynamic Landscape Features and Environments. T. Am. Fish.
1178	Soc. 140:665–684.
1179	
1180	Felsenstein, J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: 164-
1181	166.
1182	
1183	Hess, J. E., A. P. Matala, and S. R. Narum. 2011. Comparison of SNP and microsatellite markers
1184	for application of genetic stock identification for Chinook salmon in the Columbia River
1185	Basin. Molecular Ecology Resources 11 (Suppl. 1):1–13.
1186	
1187	Hess, J. E. and S. R. Narum. 2011. SNP loci correlated with run-timing in adult Chinook salmon
1188	from the Columbia River Basin. Transactions of the American Fisheries Society
1189	140(3):855-864
1190	
1191	Hess, J.E., N.R. Campbell, A.P. Matala, S.R. Narum. 2012. 2011 Annual Report: Genetic
1192	Assessment of Columbia River Stocks. U.S. Dept. of Energy Bonneville Power
1193	Administration Report Project #2008-907-00.
1194	
1195	Hess, J.E., N.R. Campbell, A.P. Matala, S.R. Narum. 2013. 2012 Annual Report: Genetic
1196	Assessment of Columbia River Stocks. U.S. Dept. of Energy Bonneville Power
1197	Administration Report Project #2008-907-00.
1198	Hess, J.E., N.R. Campbell, A.P. Matala, D.J. Hasselman, and S.R. Narum. 2015. 2014 Annual
1199	Report: Genetic Assessment of Columbia River Stocks. U.S. Dept. of Energy Bonneville
1200	Power Administration Report Project #2008-907-00.

1201	
1202 1203 1204	Hess, J.E., J.M. Whiteaker, J.K. Fryer, and S.R. Narum. 2014. Monitoring stock-specific abundance, run timing, and straying of Chinook salmon in the Columbia River using genetic stock identification (GSI). North American Journal of Fisheries Management 34:
1205	184-201.
1206	Kelinewski S.T. K.D. Manlaus and M.L. Tanan 2007, ONCOD, a computer measure for
1207 1208	Kalinowski S.T., K.R. Manlove, and M.L. Taper. 2007. ONCOR: a computer program for genetic stock identification. Montana State University, Department of Ecology, 22pp.
1209	Nomum C. D. T. L. Schultz, D. M. Van Doormik and D. Taol. 2008. Localized constinuture
1210	Narum, S. R., T. L. Schultz, D. M. Van Doornik and D. Teel. 2008. Localized genetic structure persists in wild populations of Chinook salmon in the John Day River despite gene flow
1211 1212 1213	from outside sources. Transactions of the American Fisheries Society 137:1650-1656.
1213	
1214	Narum, S. R., J.E. Hess, and A.P. Matala. 2010. Examining genetic lineages of Chinook salmon
1216	in the Columbia River Basin. Transactions of the American Fisheries Society 139:1465-
1210	1477.
1217	17//.
1210	Nei, M. 1972. Genetic distance between populations. The American Naturalist 106:283-292.
1210	Then, M. 1972. Genetic distance between populations. The Emiorican Maturalist 100.203 292.
1220	Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using
1222	multilocus genotype data. Genetics, 155(2): 945–959.
1223	mathoeus genotype data. Geneties, 155(2). 745-557.
1223	Saitou, N., and M. Nei .1987. The neighbor-joining method: a new method for reconstructing
1225	phylogenetic trees. Mol Biol Evol 4: 406–425
1226	phylogenetic dees. Mor blor bror 1. 100 125
1220	Seeb, L. W., A. Antonovich, M. A. Banks, T. D. Beacham, M. R. Bellinger, S. M. Blankenship,
1228	M. R. Campbell, N. A. Decovich, J. C. Garza, C. M. Guthrie, T. A. Lundrigan, P.
1229	Morgan, S. R. Narum, J. J. Stephenson, K. J. Supernault, D. J. Teel, W. D. Templin, J. K.
1230	Wenburg, S. F. Young, and C. T. Smith. 2007. Development of a standardized DNA
1230	database for Chinook salmon. Fisheries 32(11):540-552.
1232	
1233	Shaklee, J. B., T. D. Beacham, L. Seeb, and B. A. White. 1999. Managing fisheries using genetic
1234	data: case studies form four species of Pacific salmon. Fisheries Research 43(1-3)45-78.
1235	
1236	Steele CA, Campbell MR, Ackerman M, McCane J, Hess MA, Campbell N, Narum SR. 2011.
1237	Parentage Based Tagging of Snake River hatchery steelhead and Chinook salmon.
1238	Bonneville Power Administration. Annual Progress Report, Project number 2010-031-00.
1239	https://research.idfg.idaho.gov/Fisheries%20Research%20Reports/Res11-
1240	111Steele2010%20Parentage%20Based%20Tagging%20Snake%20River%20Steelhead
1241	%20Salmon.pdf
1242	<u></u>
1243	Waples, R.S., Teel, D.J., Myers, J.M., Marshall, A.R., 2004. Life-history divergence in
1244	Chinook salmon: historical contingency and parallel evolution. Evolution, 58(2):
1245	386–403.
1246	
-	

Winans GA, Paquin MM, Van Doornik DM (2004) Genetic stock identification of steelhead in
the Columbia River basin: An evaluation of different molecular markers. North American
Journal of Fisheries Management 24, 672-685.

Section 4: Characterization of Chinook salmon, sockeye salmon, and steelhead run-timing and abundance at Bonneville Dam

- 1252
- 1253 Introduction
- 1254

1255 The Columbia River Basin supports ESA listed natural origin stocks of Chinook salmon 1256 and steelhead as well as hatchery supplemented populations. Both Chinook salmon and 1257 steelhead have been declining in the Columbia River Basin for several reasons including climate 1258 change, habitat degradation, hydropower, hatchery practices, and over-harvesting. Along with 1259 abundance estimates, basic information related to the way in which stocks of salmonids are 1260 distributed both spatially and temporally are needed by fisheries managers to achieve sustainable 1261 fisheries.

1262 As evident from the genetic stock identification (GSI and PBT) analyses of Chinook and sockeye salmon fisheries harvests in Section 3, certain stocks seem to have strong spatial and 1263 temporal associations. However, because the type of fishing gear, harvest regulations, and the 1264 locations targeted varies considerably among fisheries, samples from a representative mixture of 1265 all hatchery- and natural-origin stocks at a fixed location is expected to more accurately estimate 1266 abundance and characterize run-timing distributions of stocks. One potentially ideal fixed 1267 location for such sampling is Bonneville Dam, but trapping limitations at this location continue 1268 to pose a major challenge for sampling. In addition to information on abundance and run-timing, 1269 biological data including fork length and age can be examined with estimated stock of origin to 1270 characterize life history differences among stocks. This type of examination is especially 1271 important for steelhead, which has been managed using two life-history categories (i.e., A- and 1272 B-run). These life-history categories have been observed to be differentially characterized by 1273 run-timing at Bonneville Dam (e.g., B-run typically arrives after Aug. 25th), fork length (e.g., by 1274 1275 definition, B-run fish are greater than 78 cm), and ocean age (e.g., most B-run fish tend to spend 2 or more years in saltwater) and all of these types of data have been collected for steelhead in 1276 1277 this study.

1278 Project objectives and higher level harvest management questions

Here we analyze fish across the entire run of steelhead, Chinook and sockeye salmon 1279 from April to October to estimate temporally stratified proportions of stocks and extrapolate 1280 abundance using a daily census that is conducted at the Bonneville Dam fish counting window. 1281 1282 We examine steelhead and Chinook salmon using two sets of species-specific SNP assays for a combined total of greater than 180 loci per species. GSI of sockeye salmon requires fewer 1283 markers than for other species in this study, and a set of 90 SNP loci can accurately resolve the 1284 fewer number of sockeye stocks that are present in the basin relative to other salmonids. 1285 Although there are some methodological differences among these species-specific applications 1286 (e.g., different temporal strata, combination of PIT-tag data, etc.), the general approach to 1287 1288 estimating abundance and characterizing run-timing distributions was applied consistently across species. For all three species, we have demonstrated that these genetic baselines are generally 1289 accurate for assigning unknown origin fish, but the genetic similarity of some stocks requires 1290 large reporting groups comprised of broad geographic areas (i.e., mid-Columbia R. and lower 1291 Snake R. for spring Chinook salmon). Since Bonneville Dam is the most downstream dam on the 1292

1293 Columbia River, the fishery mixtures obtained here represent the majority of upriver/interior

- 1294 Columbia River Basin stocks. This ongoing study offers a rare opportunity to monitor
- 1295 populations of multiple species of salmonids from a broad geographic range over several years.
- 1296 This long-term study will allow us to characterize trends in run timing and abundance of
- 1297 steelhead, Chinook and sockeye salmon and provide this data to fisheries managers. However,
- the genetic stock units ('reporting groups') are not the same units that groups of fish are currently
- managed for due to levels of genetic differentiation that can be detected among baseline stocks(see results under Objective 2 for details). Thus, fisheries managers continue to explore how to
- (see results under Objective 2 for details). Thus, fisheries managers continue to explore how tobest incorporate genetic monitoring results with more traditional monitoring/tagging programs.

1302 Harvest RM&E: F&W Program Management Questions:

1303

i) What are the status and trend of adult productivity of fish populations?
ii) What are vour in-river monitoring results and what are vour estimates of s

1304 1305

1306

What are your in-river monitoring results and what are your estimates of stock composition and stock-specific abundance, escapement, catch, and age distribution?

1307 Analysis of the 2011 dataset by Hess et al. (2012) was the first year we were able to apply Parentage Based Tagging (PBT) to assign a portion of Snake River hatchery-origin spring-run 1308 Chinook salmon and summer-run steelhead back to their hatchery parents (Steele et al. 2011). 1309 This powerful genetic tool provides the opportunity to obtain additional types of data including 1310 accurate age of fish, quantification of the number of unmarked (non-adipose clipped) hatchery 1311 fish, and precise assignments of fish to their source hatchery (Steele et al. 2013). The ability of 1312 PBT to identify a fish's source hatchery has been shown to be equally accurate as traditional tags 1313 such as CWTs (Steele et al. 2013), and PBT provides assignments to specific hatcheries rather 1314 than larger reporting groups used in GSI methods (see Figure 1). However, these tools can 1315 provide the greatest benefit when applied in combination, as GSI has the ability to provide 1316 information on natural origin fish throughout the Columbia River basin, while PBT is most 1317 effective for hatchery origin fish. The current PBT baseline was recently expanded beyond 1318 Snake River hatcheries to include others above Bonneville Dam. However, this effort is 1319 ongoing, and while hatcheries continue to be added to our PBT baseline annually, GSI remains a 1320 necessary tool for both hatchery and natural origin fish that originate from outside the Snake 1321 River basin. This report is the third year in which all major age classes of steelhead (i.e. 1-, 2-, 1322 and 3- ocean ages) and Chinook salmon (3-, 4-, and 5-year olds) can be assigned using the PBT 1323 1324 baseline of Snake River hatcheries, and the first year in which these can be assigned to some Columbia River hatcheries. This study integrates PBT and GSI results to provide the greatest 1325 amount of stock information ever available for hatchery and natural origin steelhead and 1326

1327 Chinook salmon passing Bonneville Dam.

1328

1329 *Time line for completion of objectives*

Objectives will be ongoing and GSI results updated each year for harvest analyses of salmon and steelhead throughout the accords-funding. As new genetic techniques are developed they will be applied to this project and results will be compared between years to determine the extent of improvements.

1335 Methods

1336 Sample Collection

1337 Tissue samples were obtained from adult steelhead (n=898), Chinook (n = 3,268) and 1338 sockeye salmon (n=812) adults in 2015 during migration runs at Bonneville Dam. This sampling 1339 effort is covered under the 2008-2017 *US vs.* Oregon harvest biological opinion for sampling at 1340 Bonneville Dam.

1341

Sampling for Chinook salmon at Bonneville Dam began during statistical week 16 (April 1342 12, 2014). Sampling occurred at the Adult Fish Facility (AFF) located on the northern end of 1343 Bonneville Dam. Fish were sampled 4–5 d per statistical week (except when reduced due to 1344 1345 restrictions on trap use or low run size at the beginning and end of the run) and for 4–6 h per day. A picket weir was used to divert migrating fish ascending the Washington shore fish ladder into 1346 the AFF collection pool. An attraction flow was used to draw fish through a false weir where 1347 they were selected for sampling. After sampling was completed and fish recovered from the 1348 anesthetic, they were returned to the Washington shore fish ladder above the picket weir. Just 1349 2.5% of the total Spring management period adult Chinook salmon count had passed Bonneville 1350 by the sampling start date (April 12). While samples were taken from the majority of the total 1351 spring Chinook salmon run, some early timed stocks may be slightly under-estimated in the 1352 results. Restrictions imposed by USACE and NMFS on sampling at the Bonneville AFF result 1353 in sample rates for Chinook, sockeye, and steelhead that are often low. The average sample rate 1354 (weeks 16–25) for the adult and jack spring Chinook run in 2015 was 0.68%. The average 1355 sample rate for adult and jack summer Chinook was 0.18%, but sampling was limited to 1356 statistical weeks 25–27 and 30-31 (Table 1). 1357

Based on numbers of fish collected, samples were pooled into weekly strata for Chinook
(Table 1), monthly strata for steelhead (Table 2), or a combination thereof for sockeye salmon
(Table 3) spanning the majority of the run-year from April to October. We followed a similar
protocol as the Monitoring Methods Protocol "Snake River steelhead and Chinook salmon stock
composition estimates (2010-026-00) v1.0".

- 1363
- 1364 Molecular markers

Genetic markers are provided in Hess et al. 2013 for steelhead. The GT-seq panel of 298Chinook salmon are provided in Section 1.

1367 Statistical analyses

Snake River Chinook salmon and steelhead were analyzed for Parentage assignments 1368 using SNPPIT software v1.0 (ID: 1341) (Published). The program ONCOR was used to estimate 1369 1370 the most likely population-of-origin for the sockeye salmon samples. Individuals were assigned using a 'best estimate' approach Assigning individual samples using Individual Assignment (IA) 1371 1372 genetic methods v1.0 (ID: 1334) (Published). We used GSIsim for Mixture modeling to estimate stock proportions v1.0 (ID: 1333) (Published) to estimate stock composition of Bonneville Dam 1373 1374 mixture strata for Chinook salmon and steelhead. Additional detail regarding the specific application to Bonneville Dam are published in Hess et al. 2013. 1375

Table 1: Sample numbers by weekly strata for Chinook salmon that were DNA sampled ortallied for abundance at Bonneville Dam in 2015.

						Sa	mple (N)		
				Clip	ped	Non-cli			
		Statistical	Fish	(H0	OR)	(NO	R)	Sa	mple
		week	count	GSI	PBT	GSI	PBT	Total	Rate
		16	22800	21	16	11	3	51	0.22%
		17	52509	65	65	20	7	157	0.30%
		18	68011	86	108	63	11	268	0.39%
		19	23358	69	94	40	13	216	0.92%
	Spring	20	18671	52	79	52	9	192	1.03%
	Spr	21	17270	55	102	84	18	259	1.50%
		22	20717	28	44	56	13	141	0.68%
		23	19915	30	64	67	15	176	0.88%
		24	26178	21	28	84	5	138	0.53%
		25sp	7036	8	3	10	0	21	0.30%
		25su	18336	17	8	33	5	63	0.34%
iod		26	32041	15	11	29	4	59	0.18%
per	er	27	25893	9	3	4	0	16	0.06%
Management period	Summer	28	15370	0	0	0	0	0	0
eme	Su	29	18750	0	0	0	0	0	0
nag		30	9204	8	2	9	0	19	0.21%
Ma		31	11042	20	1	26	1	48	0.43%
		32	7205	7	0	19	0	26	0.36%
		33	11228	0	0	0	0	0	0.00%
		34	23267	10	2	32	0	44	0.19%
		35	67883	23	2	68	1	94	0.14%
		36	162934	47	0	115	3	165	0.10%
	Fall	37	266367	60	1	113	3	177	0.07%
		38	189650	60	4	144	2	210	0.11%
		39	147672	41	3	148	2	194	0.13%
		40	71451	50	2	137	3	192	0.27%
		41	44034	43	0	151	3	197	0.45%
		42	21422	17	1	125	2	145	0.68%
		Total	1420214	862	643	1640	123	3268	0.23%

Note: Statistical week 16 is 4/12/15–4/18/15 and 42 is 10/11/15–10/17/15. 'Fish count' is based
on tallies of Chinook salmon adults and jacks provided by the Fish Passage Center
(http://www.fpc.org) observed by the Corps of Engineers at their fish counting window. The total
sum of all samples for a given week was used to calculate sample rate. The management periods
approximate the date ranges from April to June 15th (Spring management period), June 16th to
July 31st (Summer management period), and August 1st to December 31 (Fall management
period) which are used to categorize spring-, summer-, and fall-run Chinook salmon. The
number of sampled fish that were assigned via PBT or GSI are shown.

Table 2: Sample numbers by monthly strata for steelhead that were DNA sampled or tallied forabundance at Bonneville Dam in 2015.

			Bonnev	ville		Sam	ole (N)			
Management	4-wk	Fi	sh Windov	w Count	Clip	Clipped		lipped	Sample	
Period	Strata	Total	Clipped	Non-clipped	GSI	PBT	GSI	PBT	Total	rate
	15_18	860	401	459	6	3	6	0	15	1.7%
Skamania Summer	19_22	928	657	271	18	4	5	0	27	2.9%
Summer	23_26	4689	2689	2000	9	3	10	0	22	0.5%
	27_30	32350	13159	19191	2	7	16	0	25	0.1%
Summer	31_34	124493	78990	45503	26	128	157	6	317	0.3%
A/B Index	35_38	69474	50861	18613	27	125	55	21	228	0.3%
	39_42	26035	18676	7359	10	182	41	31	264	1.0%
	Total	258829	165433	93396	98	452	290	58	898	0.35%

1388 Note: Statistical week 15 is 4/5/15–4/11/15 and 42 is 10/11/15–10/17/15. 'Fish count' is based

1389 on tallies of adipose-clipped and non-clipped adult steelhead provided by the Fish Passage

1390 Center (http://www.fpc.org) observed by the Corps of Engineers at their fish counting window.

1391 The total sum of all samples for a given week was used to calculate sample rate. The

1392 management periods approximate the date ranges from April 1st-June 30th and July 1st-October

1393 31st which are used to categorize Skamania and summer steelhead, respectively. The sample

numbers were split into two categories according to whether samples had been taken from fish

that were adipose clipped or non-clipped, and then further split according to the number of

1396 samples that were either assigned via PBT or GSI.

Statistical			Sam	nple (N)		
week	Fish				_	Sample
grouping	Count	OKA	RED	WEN	Total	rate (%)
22_23	2808	23	0	4	27	0.96%
24	21918	69	0	42	111	0.51%
25	84383	167	4	87	258	0.31%
26	181971	134	2	92	228	0.13%
27_30	215119	111	4	52	167	0.08%
31_32	3842	17	0	4	21	0.55%
Total	510041	521	10	281	812	0.16%

Table 3: Sample numbers for genetic stock assignments of sockeye salmon that passedBonneville Dam in 2015.

Note: Statistical week 22 is 5/24/15–5/30/15 and 32 is 8/2/15–8/8/15. 'Fish count' is based on tallies of sockeye salmon adults provided by the Fish Passage Center (http://www.fpc.org)

1400 tames of sockeye samon adults provided by the Fish Passage Center (http://www.ipc.org)
 1401 observed by the Corps of Engineers at their fish counting window. GSI stocks are Okanagan
 1402 (OKA), Snake River (RED), and Wenatchee (WEN). The number of samples for a given

statistical week or grouping was used to calculate sample rate. Very few sockeye salmon were
sampled from the Snake River stock (n=10), which greatly limited inferences regarding run-

timing and abundance of this stocks.

1406

1407 **Results**

1408 *Estimated relative abundance of Chinook salmon stocks in 2015*

1409 There were 13 major (i.e., abundance >1000 fish) hatchery origin Chinook salmon stocks represented in the total estimate relative abundance (N=557,403) of hatchery Chinook salmon 1410 passing Bonneville Dam in 2015 (Table 4; Figure 1). These stocks in order of decreasing 1411 magnitude were 18 UCOLSF (194,513), 12 HELLSC (104,367), 05 SPCRTU (81,009), 1412 1413 19_SRFALL (63,265), 10_UCOLSP (43,307), 13_SFSALM (19,941), 07_DESCP (17,678), 16_UPSALM (13,450), 06_KLICKR (6,131), 09_YAKIMA (4,696), 17_DESCFA (3,811), 1414 1415 15_MFSALM (1,316), and 11_TUCANO (1,264) (Table 4; Figure 1). These estimates include relative abundance for PBT-assigned fish (adipose clipped and non-clipped) and adipose clipped 1416 fish that were assigned via GSI. PBT assignments improved our ability to accurately identify 1417 hatchery origin fish and estimate total stock abundance (Table 4). Further, using PBT 1418 assignments we can now provide relative abundance (Table 5; Figure 2) and run-timing 1419 estimates for particular hatchery broodstocks (Table 5). 1420

			Estimated abunda	nce					Run-timing o	distribution		
			r	Management Period	1			C	rdinal day		_	
			Spring	Summer	Fall		1st	3rd	5th	95th	Median	Interquartile
Reporting Group	Mean	95% CI	Jan. 1-Jun. 15	Jun. 16- Aug. 1	Aug. 1-Dec. 1	Median	quartile	quartile	percentile	percentile	date	range (days)
01_YOUNGS	719	49 – 2728	0	0	719	239	237	240	235	240	08/27/15	3
02_WCASSP	229	10 - 1984	0	229	0	209	207	210	206	212	07/28/15	3
03_WCASFA	877	279 – 4961	0	0	877	258	256	259	255	261	09/15/15	3
04_WILLAM	103	82 – 2475	103	0	0	125	123	127	122	128	05/05/15	4
05_SPCRTU	81009	65741 – 95023	0	0	81009	254	250	261	242	272	09/11/15	11
06_KLICKR	6131*	3389 - 8122	5330	801	0	134	117	150	106	168	05/14/15	33
07_DESCSP	17678*	13756 – 21857	15507	2171	0	119	110	142	105	199	04/29/15	32
08_JOHNDR	728	35 – 3040	728	0	0	110	109	112	108	152	04/20/15	3
09_YAKIMA	4696*	3395 – 7149	4696	0	0	136	118	146	106	156	05/16/15	28
10_UCOLSP	43307*	40508 – 50153	43307	0	0	117	110	122	106	143	04/27/15	12
11_TUCANO	1264*	676 – 2934	919	345	0	150	144	156	130	169	05/30/15	12
12_HELLSC	104367*	98846 - 111701	97050	7317	0	118	111	129	106	173	04/28/15	18
13_SFSALM	19941*	15909 – 24150	14845	5096	0	155	146	166	128	180	06/04/15	20
14_CHMBLN	0	0 - 1078	0	0	0	-	-	-	-	-	-	-
15_MFSALM	1316	317 – 4270	1316	0	0	108	106	114	102	138	04/18/15	8
16_UPSALM	13450*	10440 - 18218	8717	4733	0	153	134	171	114	177	06/02/15	37
17_DESCFA	3811	6 - 4167	0	0	3811	253	247	266	242	273	09/10/15	19
18_UCOLSF	194513*	173387 – 216689	6186	32049	156279	249	238	259	169	276	09/06/15	21
19_SRFALL	63265*	41875 – 78639	366	2287	60612	252	246	256	229	269	09/09/15	10
Total	557403*		199070	55027	303306							

1421 Table 4: Stock-specific relative abundance and run-timing distribution of hatchery origin (adipose clipped and non-clipped) Chinook salmon passing Bonneville Dam in 2015.

1422 *Combined with PBT estimated abundance

1423

Note: These summary statistics of run-timing distributions were calculated using a method to estimate abundance of each stock based on weekly stock proportions and total numbers of

1425 Chinook salmon that were observed passing Bonneville Dam at the fish counting window. The run-timing distributions are characterized by ordinal days for the median date, inter-quartile

range (days), and 5th and 95th percentile. The distributions were based on the weekly estimated reporting group proportions that were applied to the daily tallies of Chinook salmon at the
 Bonneville Dam fish counting window. This method for estimating run-timing distributions minimizes bias imposed by uneven sampling. Hatchery-origin run-timing distributions

1428 include stock abundance estimated from PBT and GSI assigned fish.

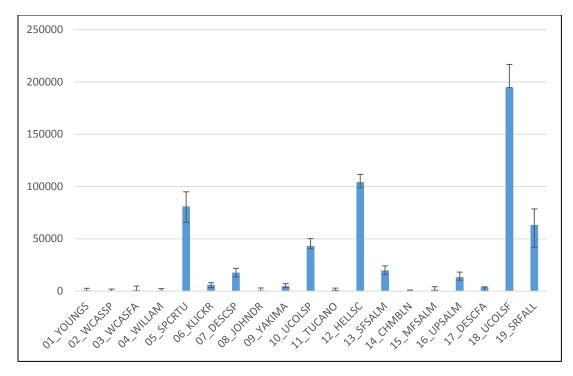


Figure 1: Relative abundance (\pm 95% CI) of hatchery origin Chinook (adipose clipped and nonclipped) assigned to genetic stock of origin that were sampled at Bonneville Dam in 2015.

1433

1430

1434 We detected PBT assignments for 7% (123/1763) of adipose non-clipped (i.e., presumed wild-origin) Chinook salmon sampled at Bonneville Dam in 2015. There were 14 major (i.e., 1435 1436 abundance >1000 fish) Chinook salmon stocks represented in the total estimate relative abundance (N=818,032) of natural origin (i.e., adipose non-clipped fish that did not assign via 1437 PBT) Chinook salmon passing Bonneville Dam in 2015 (Table 6; Figure 3). These non-clipped 1438 stocks in order of decreasing magnitude were 18_UCOLSF (612,750), 19_SRFALL (114,281), 1439 1440 12_HELLSC (16,992), 05_SPCRTU (15,614), 10_UCOLSP (14,086), 17_DESCFA (8,776), 09_YAKIMA (7,157), 16_UPSALM (6,097), 08_JOHNDR (5,278), 13_SFSALM (5,026), 1441 1442 15 MFSALM (4,941), 03 WCASFA (2,110), 07 DESCP (1,907), and 14 CHMBLN (1,736). These stock abundance estimates were based on the stock proportions that were estimated in 1443 1444 GSI_sim across weekly strata, and were multiplied with the total abundance of Chinook salmon 1445 that was tallied on a daily basis at the Bonneville Dam fish counting window (Table 1). Due to restrictions at Bonneville Dam, we were not able to sample Chinook during statistical weeks 28-1446 29 (summer management period), and statistical week 33 (fall management period). Because we 1447 1448 could not include that data in our estimates of relative abundance, the estimates that we have 1449 provided should be considered sub-total abundances for the summer and fall management 1450 periods.

Table 5: Hatchery broodstock-specific relative abundance and run-timing distributions of adipose clipped and non-clipped PBT-assigned Chinook salmon passing Bonneville
 collection is presented in Section 3 (Table 1).

					Estimated abund	dance					Run-timing c	listribution		
						Management Period	ł				Ordina	l day		
		Tagging rate			Spring	Summer	Fall		1st	3rd	5th	95th	Median	Interquartile
Reporting Group	Broodstock collection	(%)	Mean	95% CI	Jan. 1-Jun. 15	Jun. 16- Aug. 1	Aug. 1-Dec. 1	Median	quartile	quartile	percentile	percentile	date	range (days)
06_KLICKR	OtsKH10S	97.46	267	0 – 786	519	0	0	118	117	119	115	120	04/28/15	2
00_KLICKK	OtsKH11S	80.72	4009	1713 – 5537	350	0	0	138	114	152	105	169	05/18/15	38
	OtsPFF12	89.00	145	0-371	6836	0	0	139	137	140	136	142	05/19/15	3
07_DESCSP	OtsRB12	92.00	2016	503 – 3631	209	0	0	169	155	175	143	210	06/18/15	20
	OtsWSNFH12	60.00	1841	587 – 3482	539	0	0	140	122	200	116	205	05/20/15	78
09_YAKIMA	OtsYR12	99.00	887	229 – 1355	99	0	0	149	139	156	131	162	05/29/15	17
	OtsCAR12	90.00	519	0-802	24260	0	0	129	125	144	122	149	05/09/15	19
10_UCOLSP	OtsMETH12	93.00	599	330 – 1551	2404	0	0	138	126	143	123	148	05/18/15	17
	OtsUMA12_sp	92.00	520	163 – 984	2193	0	0	133	130	136	129	141	05/13/15	6
	OtsLYON12S	95.65	820	0-1314	2075	3103	0	148	144	167	130	170	05/28/15	23
11_TUCANO	OtsTUCW11S	98.75	212	155 – 1365	341	0	0	150	132	153	129	156	05/30/15	21
	OtsTUCW12S	95.23	233	0 – 594	124	0	0	153	151	155	150	156	06/02/15	4
	OtsCLWH10S	99.48	350	0-1341	267	0	0	110	109	112	108	114	04/20/15	3
	OtsCLWH11S	95.61	6836	4069 - 9333	3208	801	0	115	109	121	105	135	04/25/15	12
	OtsCLWH12S	95.93	209	0 – 782	2485	0	0	131	130	133	129	135	05/11/15	3
	OtsCTHW11S	91.67	539	71 – 1253	888	2170	0	120	117	136	116	141	04/30/15	19
	OtsDWOR10S	98.48	99	0 – 297	72	0	0	131	130	133	129	135	05/11/15	3
	OtsDWOR11S	98.69	24260	19404 – 27610	2887	951	0	116	110	120	107	138	04/26/15	10
	OtsDWOR12S	99.26	2404	1848 – 3991	0	263	5000	133	125	140	118	147	05/13/15	15
	OtsGRUW11S	98.90	2193	1159 – 4031	474	345	0	118	109	126	104	150	04/28/15	17
	OtsIMNW11S	94.42	5178	2085 – 8128	0	0	2669	172	155	179	144	183	06/21/15	24
12_HELLSC	OtsLOOK11S	97.44	2485	1401 – 4857	64	0	0	112	108	117	104	130	04/22/15	9
	OtsLOOK12S	100.00	3058	526 - 6082	11314	2288	0	178	165	181	133	184	06/27/15	16
	OtsLSTW10S	94.34	72	0 – 587	2203	2809	0	139	137	140	136	142	05/19/15	3
	OtsLSTW11S	91.53	3839	1579 – 4860	599	0	0	154	144	163	127	175	06/03/15	19
	OtsNPFH11S	98.88	720	0 - 1574	720	0	0	119	117	139	115	148	04/29/15	22
	OtsNPFH12S	95.85	103	0 – 299	0	0	1770	131	130	133	129	135	05/11/15	3
	OtsPOWP11S	99.18	10342	7553 – 13395	103	0	0	117	109	122	105	134	04/27/15	13
	OtsPOWP12S	98.00	430	99 – 795	0	0	6208	133	130	137	129	141	05/13/15	7
	OtsRAPH11S	98.35	29903	24929 – 33773	2113	548	0	117	110	119	106	136	04/27/15	9
	OtsRAPH12S	95.36	1075	642 – 2181	145	0	0	138	130	144	123	149	05/18/15	14
	OtsJHNW11S	93.90	341	154 – 1287	10342	0	0	151	127	154	123	156	05/31/15	27
	OtsJHNW12S	90.25	124	0-364	430	0	0	153	151	155	150	156	06/02/15	4
13_SFSALM	OtsMCCA10S	99.37	64	0 - 6558	0	0	14698	139	137	140	136	142	05/19/15	3
	OtsMCCA11S	99.32	13602	8880 - 13954	29903	0	0	153	145	161	129	174	06/02/15	16
	OtsMCCA12S	100.00	5012	3752 – 10217	1075	0	0	172	158	179	145	183	06/21/15	21
	OtsPAHH11S	97.21	2661	1437 – 4213	503	1513	0	156	138	165	129	176	06/05/15	27
16_UPSALM	OtsSAWT11S	96.59	5201	3232 – 1365	3422	1779	0	138	125	169	112	176	05/18/15	44
	OtsSAWT12S	100.00	4501	2379 – 984	2096	2405	0	166	149	174	137	203	06/15/15	25
	OtsPRH12	62.64	14698	9343 - 19645	212	0	0	261	255	268	244	275	09/18/15	13
18_UCOLSF	OtsWELLS12	99.47	262	0-343	233	0	0	149	146	152	143	156	05/29/15	6
	OtsLYON11S	89.88	5263	3251 - 9470	520	0	0	257	232	264	227	268	09/14/15	32
	OtsLYON12S_1	98.60	2669	306 - 6558	262	0	0	250	245	253	242	278	09/07/15	8
	 OtsNPFH11S_1	89.88	1770	0 – 4450	1183	657	0	255	239	258	236	261	09/12/15	19
19_SRFALL	OtsNPFH12S_1	99.37	6208	2317 - 10545	887	0	0	251	246	254	238	278	09/08/15	8
	Total		168539		118559	19633	30344			-	_			

1453

 Total
 168539
 118559
 19633
 30344
 Image: Control of the second state of the second

1454 passing Bonneville Dam at the fish counting window.

le	Dam	in	2015.	Key	to	broodstock
----	-----	----	-------	-----	----	------------

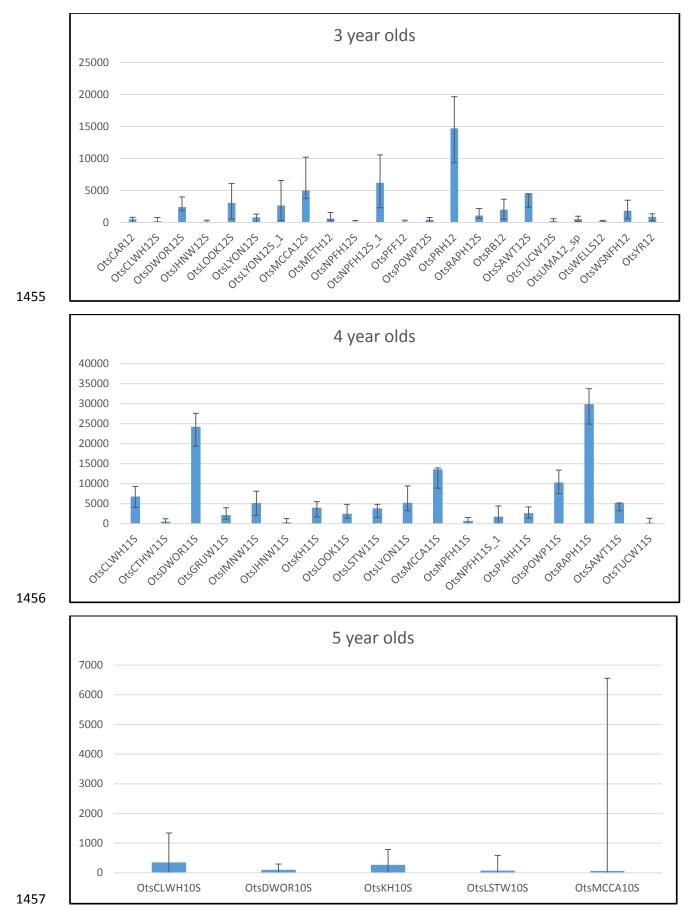
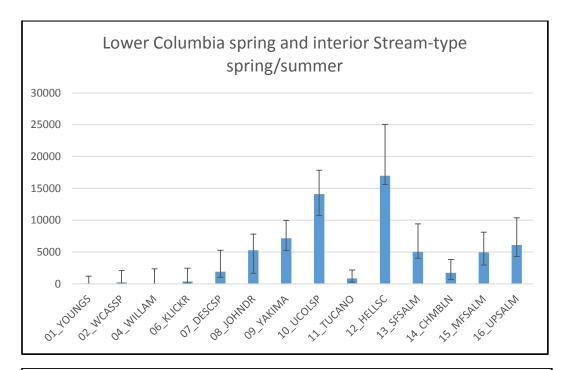



Figure 2: Relative abundance (± 95% CI) of hatchery origin Chinook (adipose clipped and nonclipped) sampled at Bonneville Dam in 2015 that assigned via PBT to 45 hatchery broodstocks
of origin by age class. The 2012 age-class (3-year old fish; top panel), 2011 age class (4-year old
fish), and 2010 age class (3-year old fish) are shown. Key to broodstock collection is presented
in Section 3 (Table 1)

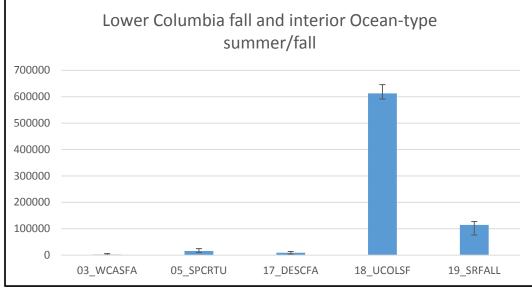


Figure 3: Relative abundance (\pm 95% CI) of natural origin (adipose non-clipped) Chinook sampled at Bonneville Dam in 2015 assigned to genetic stock of origin. Lower Columbia spring and interior stream-type spring/summer Chinook reporting groups (top panel), and lower Columbia fall and interior Ocean-type Chinook reporting groups (bottom panel) are shown.

			Estimated abunda	ince					Run-timing o	distribution		
				Management Period	ł				Ordina	al day		
			Spring	Summer	Fall		1st	3rd	5th	95th	Median	Interquartile
Reporting Group	Mean	95% CI	Jan. 1-Jun. 15	Jun. 16- Aug. 1	Aug. 1-Dec. 1	Median	quartile	quartile	percentile	percentile	date	range (days)
01_YOUNGS	0	0 - 1204	0	0	0	-	-	-	-	-	-	-
02_WCASSP	230	98 – 2083	230	0	0	136	132	139	129	142	05/16/15	7
03_WCASFA	2110	1049 – 6074	0	0	2110	240	238	277	235	281	08/28/15	39
04_WILLAM	0	15 – 2355	0	0	0	-	-	-	-	-	-	-
05_SPCRTU	15614	9379 – 24579	0	0	15614	249	244	254	239	268	09/06/15	10
06_KLICKR	379	118 – 2459	379	0	0	157	150	160	137	163	06/06/15	10
07_DESCSP	1907	1023 – 5281	1907	0	0	117	109	128	106	146	04/27/15	19
08_JOHNDR	5278	1651 – 7822	3659	1618	0	126	117	178	109	183	05/06/15	61
09_YAKIMA	7157	5215 – 9981	7157	0	0	119	117	135	109	159	04/29/15	18
10_UCOLSP	14086	10760 - 17846	14086	0	0	118	111	129	104	152	04/28/15	18
11_TUCANO	853	262 – 2183	853	0	0	119	117	127	116	138	04/29/15	10
12_HELLSC	16992	15604 – 25070	15862	1131	0	128	112	150	105	166	05/08/15	38
13_SFSALM	5026	4019 - 9411	3986	1040	0	159	151	163	140	175	06/08/15	12
14_CHMBLN	1736	661 - 3805	1101	635	0	155	119	172	116	176	06/04/15	53
15_MFSALM	4941	2965 - 8119	4097	844	0	137	122	149	116	173	05/17/15	27
16_UPSALM	6097	4298 - 10383	6097	0	0	151	135	158	122	162	05/31/15	23
17_DESCFA	8776	3940 - 13716	0	162	8613	258	255	263	230	285	09/15/15	8
18_UCOLSF	612570	591152 – 645567	17921	35779	558869	254	245	263	173	279	09/11/15	18
19_SRFALL	114281	76055 – 127156	60	848	113373	249	242	257	231	272	09/06/15	15
Total	818032											

1 Table 6: Relative abundance and run-timing distributions of natural origin (adipose non-clipped) Chinook salmon stocks passing Bonneville Dam in 2015.

2 Run-timing of Chinook salmon stocks in 2015

3 We obtained sufficient sample sizes to characterize the run-timing distributions of 18 hatchery origin (adipose clipped and non-clipped) Chinook salmon stocks (Table 4; Figure 4). 4 The run timing for five hatchery origin spring Chinook stocks (i.e., 04 WILLAM, 08 JOHNDR, 5 09 YAKIMA, 10 UCOLSP, and 15 MFSALM) were found to terminate within the spring 6 management period (i.e., the 95th percentile of their run distribution occurred on or before June 7 15th: ordinal day 166). The run timing for six hatchery origin spring Chinook stocks (i.e., 8 02_WCASSP, 06_KLICKR, 07_DESCP, 11_TUCANO, 12_HELLSC, 13_SFSALM), and one 9 10 hatchery spring/summer Chinook stock (i.e., 16 UPSALM) were found to terminate within the summer management period (i.e., the 95th percentile of their run distribution occurred on or 11 before July 31st; ordinal day 212). The run-timing for the remaining hatchery summer/fall 12 Chinook (i.e., 18 UCOLSF) and hatchery fall Chinook stocks (i.e., 01 YOUNGS, 13 03_WCASFA, 05_SPCRTU, 17_DESCFA, and 19_SRFALL) all had median dates on or after 14 8/27/15 (Table 4; Figure 4). 15 We obtained sufficient sample sizes to characterize the run-timing distributions of 17 16

natural origin (adipose non-clipped) Chinook salmon stocks (Table 6; Figure 5). The run timing 17 for seven natural origin spring Chinook stocks (i.e., 02 WCASSP, 06 KLICKR, 07 DESCP, 18

09 YAKIMA, 10 UCOLSP, 11 TUCANO, 12 HELLSC) and one spring/summer Chinook 19

stock (i.e., 16 UPSALM) were found to terminate within the spring management period (i.e., the 20

95th percentile of their run distribution occurred on or before June 15th; ordinal day 166). The run 21

timing for four natural origin spring Chinook stocks (i.e., 08 JOHNDR, 13 SFSALM, 22

14_CHMBLN, and 15_MFSALM) were found to terminate within the summer management 23

period (i.e., the 95th percentile of their run distribution occurred on or before July 31st; ordinal 24

day 212). The run-timing for the remaining natural origin summer/fall Chinook (i.e., 25

- 18 UCOLSF) and natural origin fall Chinook salmon stocks (i.e., 03 WCASFA, 05 SPCRTU, 26
- 27 17 DESCFA, and 19 SRFALL) all had median dates on or after 8/28/15 (Table 6; Figure 5).

Using the PBT-assigned Chinook salmon, we also characterized the run timing 28 distributions for hatchery broodstocks in our PBT baseline (Table 5; Figure 6). Among relatively 29 abundant broodstocks (≥1000 fish), the run-timing of eight broodstock sources (i.e.,

- 30
- OtsLOOK11S, OtsPOWP11S, OtsCLWH11S, OtsRAPH11S, OtsRAPH12S, OtsDWOR11S, 31

OtsDWOR12S, OtsGRUW11S) were found to terminate within the spring management (i.e., the 32 95th percentile of their run distribution occurred on or before June 15th; ordinal day 166). The

33

run-timing for 11 broodstock sources (i.e., OtsKH11S, OtsMCCA11S, OtsMCCA12S, 34

OtsLSTW11S, OtsPAHH11S, OtsSAWT11S, OtsSAWT12S, OtsIMNW11S, OtsLOOK12S, 35

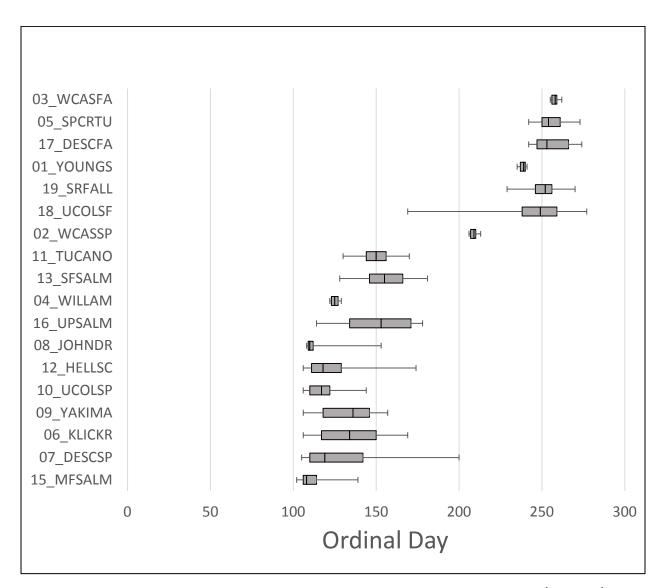
OtsWSNFH12s, and OtsRB12) were found to terminate within the summer management period 36

(i.e., the 95th percentile of their run distribution occurred on or before July 31st; ordinal day 212). 37

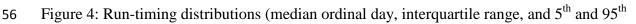
The run-timing for the five remaining broodstock sources (i.e., OtsPRH12, OtsLYONS11S, 38

OtsLYON12S 1, OtsNPFH11S 1, and OtsNPFH12S 1) all had median dates on or after 9/7/15 39 (Table 5: Figure 6). 40

41

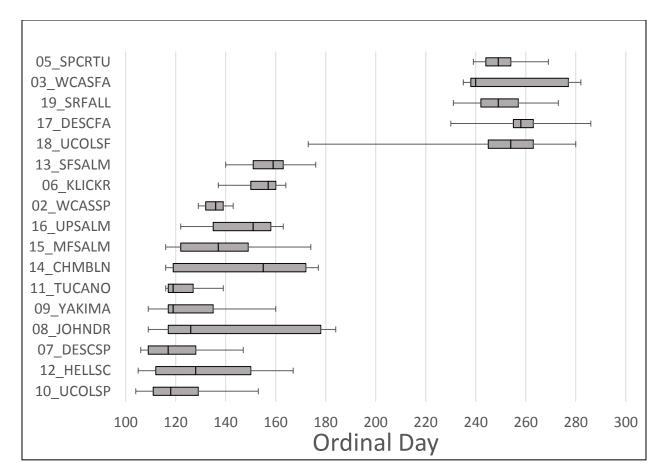

42

44 Parentage based tagging analyses of Chinook salmon in 2015


We were able to assign 771 adult and jack Chinook salmon sampled at Bonneville Dam 45 in 2015 to 45 different hatchery broodstock sources from 2010-2012. The majority (i.e., 691; 46 89%) assigned to 34 Snake River hatchery broodstock sources, while the remaining 80 fish 47 assigned to 11 Columbia River hatchery broodstock sources (Table 7). The Snake River and 48 Columbia River hatchery broodstock sources were aggregated into appropriate GSI reporting 49 groups in order to integrate the relative abundance estimates from this analysis with relative 50 abundance from GSI analyses. Tagging rates varied across hatchery brood stock sources from 51 52 60% to 100%, with six hatchery broodstock sources having tagging rates <90% (i.e.,

53 OtsWSNFH12, OtsPRH12, OtsKH11, OtsPFF12, OtsLYON11S, OtsNPFH11S_1) (Table 7).

54



55

57 percentile) for hatchery origin Chinook (adipose clipped and non-clipped) that were sampled at

58 Bonneville Dam in 2015 and assigned to stock of origin.

59

60 Figure 5: Run-timing distributions (median ordinal day, interquartile range, and 5th and 95th

61 percentile) for natural origin Chinook (adipose non-clipped) that were sampled at Bonneville

62 Dam in 2015 and assigned to stock of origin.

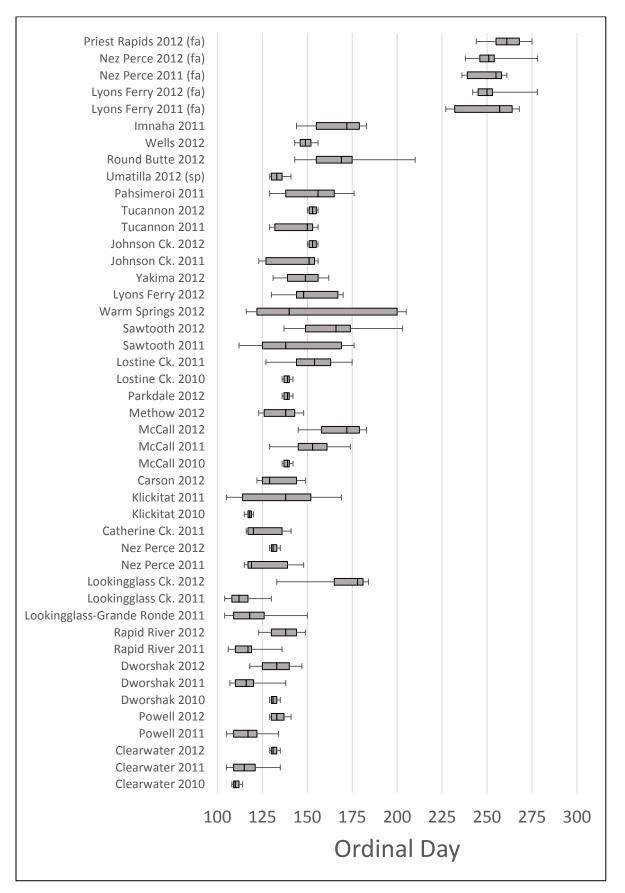


Figure 6: Run-timing distributions (median ordinal day, interquartile range, and 5th and 95th percentile) for hatchery origin Chinook (adipose clipped and non-clipped) assigned to PBT broodstock of origin that were sampled at Bonneville Dam in 2015. Hatcheries and their broodyears are ordered from earliest to latest run-timing, with fall Chinook hatchery stocks at the top.

- Table 7: Summary information about the PBT Chinook salmon hatchery broodstock sources and number of assignments. Key to broodstock collection is presented in Section 3 (Table 1). 2

Broodstock			Tagging		Adipose	fin		
collection	Basin	Reporting Group	rate (%)	Age	Clipped	Non-clipped	Total	
OtsKH10S	Columbia	06 KLICKR	97.46	5	1		1	
OtsKH11S	Columbia	 06 KLICKR	80.72	4	20	1	21	
OtsPFF12	Columbia	07 DESCSP	89.00	3	2		2	
OtsRB12	Columbia	07 DESCSP	92.00	3	8		8	
OtsWSNFH12	Columbia	07 DESCSP	60.00	3	7		7	
OtsYR12	Columbia	 09 YAKIMA	99.00	3	7	1	8	
OtsCAR12	Columbia	10 UCOLSP	90.00	3	4		4	
OtsMETH12	Columbia	10_UCOLSP	93.00	3	1	5	6	
OtsUMA12_sp	Columbia	10_UCOLSP	92.00	3	6		6	
OtsLYON12S	Snake	11_TUCANO	95.65	3		5	5	
OtsTUCW11S	Snake	11_TUCANO	98.75	4		2	2	
OtsTUCW12S	Snake	11_TUCANO	95.23	3		2	2	
OtsCLWH10S	Snake	12_HELLSC	99.48	5	1		1	
OtsCLWH11S	Snake	12_HELLSC	95.61	4	31		31	
OtsCLWH12S	Snake	12_HELLSC	95.93	3	2		2	
OtsCTHW11S	Snake	12_HELLSC	91.67	4	4		4	
OtsDWOR10S	Snake	12_HELLSC	98.48	5	1		1	
OtsDWOR11S	Snake	12_HELLSC	98.69	4	108	8	116	
OtsDWOR12S	Snake	12_HELLSC	99.26	3	24	1	25	
OtsGRUW11S	Snake	12_HELLSC	98.90	4	5	8	13	
OtsIMNW11S	Snake	12_HELLSC	94.42	4	20		20	
OtsLOOK11S	Snake	12_HELLSC	97.44	4	9		9	
OtsLOOK12S	Snake	12_HELLSC	100.00	3	9		9	
OtsLSTW10S	Snake	12_HELLSC	94.34	5	1		1	
OtsLSTW11S	Snake	12_HELLSC	91.53	4	24		24	
OtsNPFH11S	Snake	12_HELLSC	98.88	4		4	4	
OtsNPFH12S	Snake	12_HELLSC	95.85	3		1	1	
OtsPOWP11S	Snake	12_HELLSC	99.18	4	36	14	50	
OtsPOWP12S	Snake	12_HELLSC	98.00	3	3	2	5	
OtsRAPH11S	Snake	12_HELLSC	98.35	4	132	6	138	
OtsRAPH12S	Snake	12_HELLSC	95.36	3	11		11	
OtsJHNW11S	Snake	13_SFSALM	93.90	4		4	4	
OtsJHNW12S	Snake	13_SFSALM	90.25	3		1	1	
OtsMCCA10S	Snake	13_SFSALM	99.37	5	1		1	
OtsMCCA11S	Snake	13_SFSALM	99.32	4	72	28	100	
OtsMCCA12S	Snake	13_SFSALM	100.00	3	11	7	18	
OtsPAHH11S	Snake	16_UPSALM	97.21	4	19		19	
OtsSAWT11S	Snake	16_UPSALM	96.59	4	25	6	31	
OtsSAWT12S	Snake	16_UPSALM	100.00	3	22	1	23	
OtsPRH12	Columbia	18_UCOLSF	62.64	3	9	6	15	
OtsWELLS12	Columbia	18_UCOLSF	99.47	3	1	1	2	
OtsLYON11S	Snake	19_SRFALL	89.88	4	3	5	8	
OtsLYON12S_1	Snake	19_SRFALL	98.60	3	1	2	3	
OtsNPFH11S_1	Snake	19_SRFALL	89.88	4	1	1	2	
OtsNPFH12S_1	Snake	19_SRFALL	99.37	3	1	6	7	

4 Estimated relative abundance of steelhead stocks in 2015

There were five major stocks (abundance >1000) represented in the total estimated 5 relative abundance (N=166,201) of hatchery origin steelhead passing Bonneville Dam in 2015 6 (Table 8). These stocks in order of decreasing magnitude were 07 MGILCS (63,072), 7 14 UPSALM (54.210), 10 SFCLWR (28.871), 09 UPPCOL (12,746), and 03 SKAMAN 8 9 (7,010) (Table 8; Figure 7). These estimates include relative abundance estimated from PBTassigned fish that were mostly adipose clipped; however, a portion of the PBT-assigned fish 10 were found to be non-clipped. Therefore, PBT assignments improved our ability to accurately 11 12 identify hatchery-origin steelhead and estimate total stock relative abundance. Further, using PBT assignments we can now provide relative abundance (Table 9; Figure 8) and run-timing 13 estimates for particular hatchery broodstocks (Table 9). There were 15 major hatchery 14 broodstock sources (abundance >1000) represented in the total estimated relative abundance of 15 hatchery origin steelhead passing Bonneville Dam in 2015 (Table 9). These stocks in order of 16 decreasing magnitude were OmyDWOR12S (21,400), OmyPAHH13S (19,310), OmySAWT13S 17 (16,612), OmyWALL13S (14,944), OmyWEL13 (10,701), OmvLYON13S (10,516), 18 OmyWALL12S (9,665), OmyLYON12S (9,451), OmyRB13 (6,603), OmyDWOR13S (6,573), 19 OmyPAHH12S (6,437), OmyLSCR13S (6,227), OmyOXBO13S (5,878), OmyOXBO12S 20 (2,877), and OmySAWT12S (2,107). 21 We detected PBT assignments for 16.7% (58/348) of adipose non-clipped (i.e., presumed 22 wild-origin) steelhead sampled at Bonneville Dam in 2015. There were 11 major stocks 23

(abundance >1000) represented in the total estimated relative abundance (N=139,120) of natural

origin (i.e., adipose non-clipped fish that did not assign via PBT) steelhead passing Bonneville

26 Dam in 2015 (Table 10; Figure 9). These stocks in order of decreasing magnitude were

27 07_MGILCS (89,315), 09_UPPCOL (12,837), 13_MFSALM (6,732), 14_UPSALM (6,582),

28 10_SFCLWR (5,609), 11_UPCLWR (5,583), 08_YAKIMA (5,349), 06_KLICKR (2,480),

29 12_SFSALM (1,559), 02_LOWCOL (1,324), and 03_SKAMAN (1,087).

		Estima	ted abundance					Run-timing o	distribution		
			Managem	ent Period			Ordinal	day			
			Skamania	Summer		1st	3rd	5th	95th	Median	Interquartile
Reporting Group	Mean	95% CI	Apr. 1-Jun. 30	July 1- Oct. 31	Median	quartile	quartile	percentile	percentile	date	range (days)
01_WCOAST	0	0 – 96	0	0	-	-	-	-	-	-	-
02_LOWCOL	291	18 - 1405	93	199	242	117	251	100	259	08/30/15	134
03_SKAMAN	7010	3843 - 7323	2022	4988	196	176	205	132	224	07/15/15	29
04_WILLAM	0	0 – 779	0	0	-	-	-	-	-	-	-
05_BWSALM	0	0 – 152	0	0	-	-	-	-	-	-	-
06_KLICKR	0	0 - 1111	0	0	-	-	-	-	-	-	-
07_MGILCS	63072*	54490 – 74322	792	62281	222	211	233	193	257	08/10/15	22
08_YAKIMA	0	1 – 1202	0	0	-	-	-	-	-	-	-
09_UPPCOL	12746*	7011 – 19277	0	12746	223	212	239	196	259	08/11/15	27
10_SFCLWR	28871*	24370 – 33922	0	28871	260	245	270	231	284	09/17/15	25
11_UPCLWR	0	0 – 595	0	0	-	-	-	-	-	-	-
12_SFSALM	0	0 - 380	0	0	-	-	-	-	-	-	-
13_MFSALM	0	0-817	0	0	-	-	-	-	-	-	-
14_UPSALM	54210*	46010 - 62289	46	54164	232	219	250	207	272	08/20/15	31
Total	166201										

30 Table 8: Stock-specific relative abundance and run-timing distribution of hatchery origin (adipose clipped and non-clipped) steelhead passing Bonneville Dam in 2015.

31 *Combined with PBT estimated abundance

32 Note: These summary statistics of run-timing distributions were calculated using a method to estimate abundance of each stock based on weekly stock proportions and total

numbers of steelhead that were observed passing Bonneville Dam at the fish counting window. The run-timing distributions are characterized by ordinal days for the median date,

34 inter-quartile range (days), and 5th and 95th percentile. The distributions were based on the weekly estimated reporting group proportions that were applied to the daily tallies of

35 steelhead at the Bonneville Dam fish counting window. This method for estimating run-timing distributions minimizes bias imposed by uneven sampling. Hatchery-origin run-

timing distributions include stock abundance estimated from PBT and GSI assigned fish.

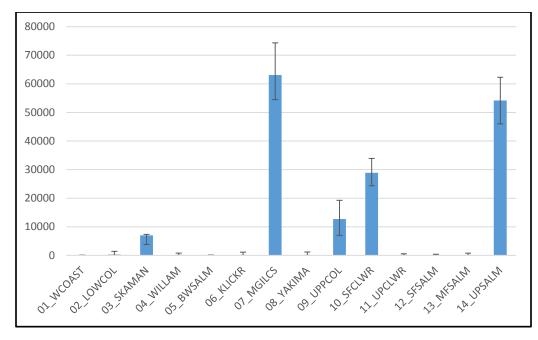
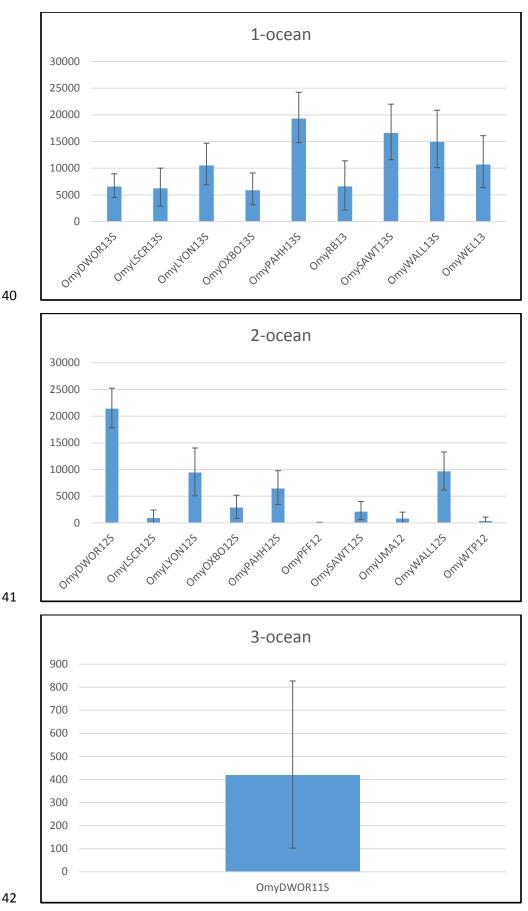



Figure 7: Relative abundance (\pm 95% CI) of hatchery origin steelhead (adipose clipped and non-

clipped) assigned to genetic stock of origin that were sampled at Bonneville Dam in 2015.

40

Figure 8: Relative abundance (± 95% CI) of hatchery origin steelhead (adipose clipped and non-43 clipped) sampled at Bonneville Dam in 2015 that assigned via PBT to 20 hatchery broodstocks 44

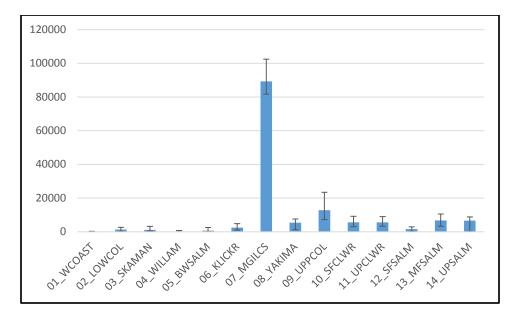
45 of origin. The 2013 age-class (1-ocean fish; top panel), 2012 age class (2-ocean fish), and 2010

age class (3-ocean fish) are shown. Key to broodstock collection is presented in Section 3 (Table 46

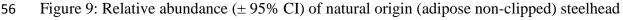
1). 47

Table 9: Hatchery broodstock-specific relative abundance and run-timing distributions of adipose clipped and non-clipped PBT-assigned steelhead passing Bonneville Dam in 2015. Key to broodstock 48 collection is presented in Section 3 (Table 3). 49

				Estima	ted abundance					Run-timing di	stribution		
					Managem	ent Period			Ordinal	day			
					Skamania	Summer		1st	3rd	5th	95th	Median	Interquartile
Reporting Group	Broodstock collection	Tagging rate	Mean	95% CI	Apr. 1-Jun. 30	July 1- Oct. 31	Median	quartile	quartile	percentile	percentile	date	range (days)
02_LOWCOL	OmyPFF12	95.5%	93	0 - 139	93	0	110	104	117	96	121	20-Apr	13
	OmyLSCR12S	95.6%	902	0-21403	0	902	227	218	244	209	257	15-Aug	26
	OmyLSCR13S	72.8%	6227	2901 – 10010	0	6227	223	214	232	208	256	11-Aug	18
	OmyLYON12S	100.0%	9451	5072 – 14016	935	8517	213	198	233	169	255	1-Aug	35
	OmyLYON13S	100.0%	10516	6896 - 14701	0	10516	225	216	243	208	260	13-Aug	27
07_INIGILCS	OmyRB13	84.2%	6603	2169 - 11389	167	6436	205	197	221	184	239	24-Jul	24
	OmyUMA12	100.0%	805	0 - 2019	0	805	227	218	244	209	257	15-Aug	26
	OmyWALL12S	99.2%	9665	6150 - 13285	0	9665	228	218	246	209	262	16-Aug	28
	OmyWALL13S	91.0%	14944	10113 – 20853	83	14861	221	211	228	197	257	9-Aug	17
09_UPPCOL	OmyWEL13	98.7%	10701	6367 – 16092	74	10627	221	211	231	195	259	9-Aug	20
U9_UPPCUL	OmyWTP12	88.1%	354	0 - 1097	0	354	247	242	253	236	259	4-Sep	11
	OmyDWOR11S	95.3%	419	103 – 828	0	419	271	265	278	262	286	28-Sep	13
10_SFCLWR	OmyDWOR12S	96.3%	21400	17798 – 25225	0	21400	258	244	269	224	283	15-Sep	25
	OmyDWOR13S	96.5%	6573	4519 – 8959	0	6573	262	248	272	238	284	19-Sep	24
	OmyOXBO12S	98.4%	2877	835 – 5176	0	2877	231	219	246	209	257	19-Aug	27
	OmyOXBO13S	97.1%	5878	3142 – 9115	0	5878	226	217	246	209	271	14-Aug	29
	OmyPAHH12S	98.1%	6437	3440 – 9775	46	6391	224	215	239	208	259	12-Aug	24
14_UPSALM	OmyPAHH13S	99.5%	19310	14780 – 24212	0	19310	241	222	254	210	277	29-Aug	32
	OmySAWT12S	100.0%	2107	596 – 4032	0	2107	238	221	251	210	270	26-Aug	30
	OmySAWT13S	99.7%	16612	11612 – 22002	73	16539	232	216	249	199	270	20-Aug	33
Total			151875		1471	150404							


Note: These summary statistics of run-timing distributions were calculated using a method to estimate abundance of each stock based on stock proportions and total numbers of steelhead that were observed passing Bonneville Dam at the fish counting window. The date ranges listed under "Skamania" and "Summer" were chosen by steelhead fishery managers, and for each hatchery source stock we provide the

50 51

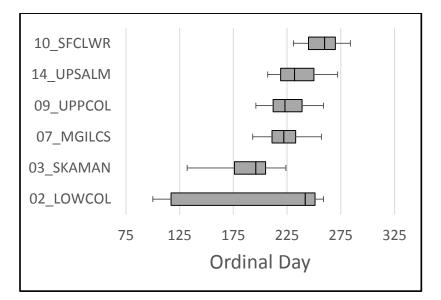

abundance that has passed within these time periods. 52

	Estimated abundance					Run-timing distribution						
			Management Period			Ordinal day						
			Skamania	Summer		1st	3rd	5th	95th	Median	Interquartile	
Reporting Group	Mean	95% CI	Apr. 1-Jun. 30	July 1- Oct. 31	Median	quartile	quartile	percentile	percentile	date	range (days)	
01_WCOAST	0	0 – 242	0	0	-	-	-	-	-	-	-	
02_LOWCOL	1324	210 – 2668	395	930	213	168	223	109	231	1-Aug	55	
03_SKAMAN	1087	447 – 3169	843	244	170	160	177	137	279	19-Jun	17	
04_WILLAM	66	0 – 749	66	0	110	104	117	96	121	20-Apr	13	
05_BWSALM	606	4 – 2515	0	606	222	213	228	208	275	10-Aug	15	
06_KLICKR	2480	979 – 4812	970	1510	221	169	253	138	278	9-Aug	84	
07_MGILCS	89315	81666 - 102444	1271	88044	222	211	233	192	261	10-Aug	22	
08_YAKIMA	5349	1228 – 7600	0	5349	220	211	228	195	251	8-Aug	17	
09_UPPCOL	12837	7184 – 23410	201	12636	227	218	244	208	257	15-Aug	26	
10_SFCLWR	5609	3023 - 9172	0	5609	250	243	258	236	277	7-Sep	15	
11_UPCLWR	5583	3328 – 8996	0	5583	260	244	270	222	284	17-Sep	26	
12_SFSALM	1559	388 – 2886	0	1559	245	224	263	211	281	2-Sep	39	
13_MFSALM	6723	3295 - 10554	0	6723	225	216	244	209	264	13-Aug	28	
14_UPSALM	6582	5 - 8836	0	6582	231	214	250	196	272	19-Aug	36	
Total	139120		3747	135373								

Table 10: Relative abundance and run-timing distributions of natural origin (adipose non-clipped) steelhead stocks passing Bonneville Dam in 2015.

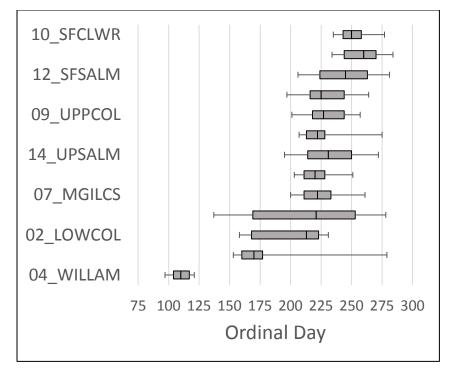
55

57 sampled at Bonneville Dam in 2015 assigned to genetic stock of origin.


58 *Run-timing of steelhead stocks in 2015*

59 We characterized the run-timing distributions of the six major hatchery steelhead stocks (Table 8; Figure 10) and 13 major natural origin steelhead stocks in 2015 (Table 10; Figure 11). 60 Very few stocks of winter-run steelhead exist above Bonneville Dam and our sampling program 61 at Bonneville AFF does not trap or collect fish between December and March when winter-run 62 steelhead would be most likely to occur. Thus, winter-run stocks are expected to be rare in our 63 64 samples from Bonneville but could occur from hatchery-origin fish from PFF in the Hood River (winter-run broodstock) or natural origin fish from sub-basins nearest upstream such as Klickitat, 65 Hood, and Fifteenmile rivers. For hatchery origin steelhead, the 02 LOWCOL stock was 66 characterized by an early run timing, but prolonged run duration (interquartile range dates: 67 4/27/15-9/8/15; ordinal days: 117-251). The 03 SKAMAN hatchery stock has previously been 68 characterized as part of an early run-timing category, and in 2015 had a median run-timing date 69 70 of 7/15/2015 (ordinal day 196). An intermediate run-timing category has also been described, and includes the following three major steelhead stocks (ordered by median date): 07_MGILCS 71 (8/10/15; ordinal day 222), 09 UPPCOL (8/11/15; ordinal day 223), and 14 UPSALM (8/20/15; 72 ordinal day 232). Finally, a late run-timing category consists of the 10_SFCLWR stock 73 (9/17/15; ordinal day 260), and is typically thought to be characteristic of B-run steelhead that 74 return after August 25th at Bonneville Dam (Table 8; Figure 10). 75

The natural origin steelhead stocks (Table 10; Figure 11) generally fit the same runtiming categories as characterized for hatchery origin steelhead. The 13 major natural origin
stocks ordered by median run-timing date were: 04_WILLAM (4/20/15; ordinal day 110),
03_SKAMAN (6/19/15; ordinal day 170), 02_LOWCOL (8/1/15; ordinal day 213),
08_YAKIMA (8/8/15; ordinal day 220), 06_KLICKR (8/9/15; ordinal day 221), 05_BWSALM


- 81 (8/10/15; ordinal day 222), 07_MGILCS (8/10/15; ordinal day 222), 13_MFSALM (8/13/15;
- 82 ordinal day 225), 09_UPPCOL (8/15/15; ordinal day 227), 14_UPSALM (8/19/15; ordinal day

231), 12_SFSALM (9/2/15; ordinal day 245), 10_SFCLWR (9/7/15; ordinal day 250), and
11_UPCLWR (9/17/15; ordinal day 260) (Table 10; Figure 11).

85

- Figure 10: Run-timing distributions (median ordinal day, interquartile range, and 5th and 95th
- percentile) for hatchery origin steelhead (adipose clipped and non-clipped) that were sampled at
 Bonneville Dam in 2015 and assigned to stock of origin.

90 Figure 11: Run-timing distributions (median ordinal day, interquartile range, and 5th and 95th

- 91 percentile) for natural origin steelhead (adipose non-clipped) that were sampled at Bonneville
- Dam in 2015 and assigned to stock of origin.

- 93 Using the PBT-assigned steelhead, we also characterized the run-timing distributions for
- hatchery broodstock sources in our PBT baseline (Table 9; Figure 12). For this analysis we
- 95 grouped the 15 major hatchery broodstock sources (abundance >1000) into categories according
- to their median run-timing date. Only the OmyRB13 broodstock source had a median run-timing
- 97 date before August 1^{st} . Most broodstock sources had median run-timing dates from August 1 1
- 98 August 29 (i.e., OmyLYON12S, OmyLYON13S, OmyWALL12S, OmyWALL13S,
- 99 OmyWEL13, OmyLSCR13S, OmyPAHH12S, OmyPAHH13S, OmyOXBO12S,
- 100 OmyOXBO13S, OmySAWT12S, OmySAWT13S). Only OmyDWOR12S and OmyDWOR13S
- 101 had median run-timing distributions after September 1^{st} .

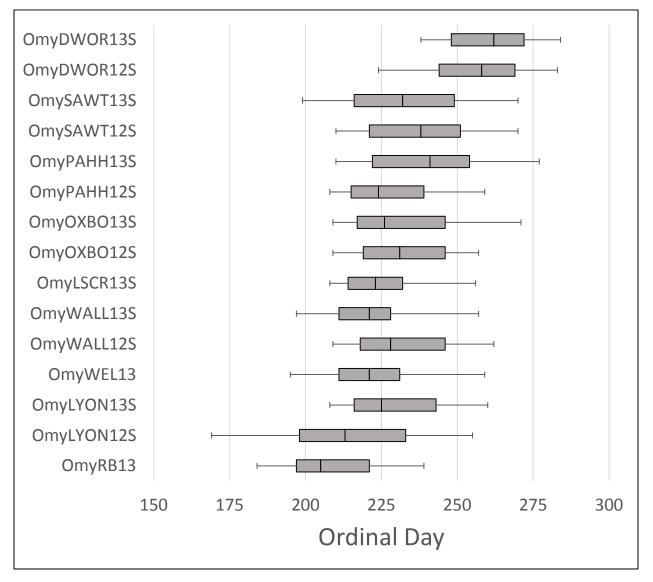


Figure 12: Run-timing distributions (median ordinal day, interquartile range, and 5th and 95th percentile) for hatchery origin steelhead (adipose clipped and non-clipped) assigned to PBT broodstock of origin that were sampled at Bonneville Dam in 2015. Hatcheries and their

- broodyears are ordered from earliest to latest run-timing. Key to broodstock collection is
- broodyears are ordered from earliest to latest run-timing. Key to broodpresented in Section 3 (Table 3).

108 Parentage based tagging analyses of steelhead in 2015

We were able to assign 510 steelhead sampled at Bonneville Dam in 2015 to 20 hatchery 109 broodstock sources (2011-2013) throughout the Columbia River basin (Table 9). The largest 110 portion of the PBT-assigned fish originated from the Dworshak Hatchery (n=97, 19%), followed 111 by Pahsimeroi (n=87; 17%), Wallowa (n=82; 16%), Lyons Ferry (n=66; 13%), and Sawtooth 112 113 (n=61; 12%) hatcheries. Using these known hatchery-of-origin steelhead, we compared the individual assignments from GSI analysis, and used these assignments to help classify them into 114 reporting groups (Table 9). Those groupings were used to combine results of PBT-hatchery 115 abundance estimates with the GSI estimated abundance of hatchery stocks (Table 8). Tagging 116 rates varied across source hatcheries from 72.8% (OmyLSCR13S) to 100% (OmyLYON12S, 117 OmyLYON13S, and OmySAWT12S) (Table 9; Table 11). 118

We examined which of the hatchery sources were contributing the size range of fish 119 typically classified as B-run steelhead (Table 11). Fish with a fork length \geq 78 cm were found to 120 primarily originate from the Dworshak broodstock source, and most of these were from the 2012 121 (2-ocean age) spawn year (Table 11). The 2-ocean age is typical of B-run life history. Further, 122 the regions of the South Fork and Upper Clearwater R. and Middle Fork and South Forth Salmon 123 R. are generally thought to be the largest sources of B-run steelhead. Dworshak broodstock fit 124 125 within the South Fork Clearwater R. genetic stock and so are expected to produce large, older steelhead. 126

127

128 Table 11: Summary information for Columbia River and Snake River hatchery broodstock

sources for steelhead sampled at Bonneville Dam in 2015.

				Sex and size				
Reporting	Broodstock	Tagging			Females	Males		Total
Group	collection	rate	Age	Ν	≥78 cm length	v		Ν
02_LOWCOL	OmyPFF12	95.5%	2-ocean	1	0.0%	1	0.0%	2
	OmyLSCR12S	95.6%	2-ocean	2	0.0%	0	0.0%	2
	OmyLSCR13S	72.8%	.8% 1-ocean		0.0%	6	0.0%	11
	OmyLYON12S	100.0%	2-ocean	16	0.0%	8	0.0%	24
07_MGILCS	OmyLYON13S	100.0%	1-ocean	14	0.0%	14	0.0%	28
07_IVIGILCS	OmyRB13	84.2%	1-ocean	2	0.0%	6	0.0%	8
	OmyUMA12	100.0%	2-ocean	2	0.0%	0	0.0%	2
	OmyWALL12S	99.2%	2-ocean	19	0.0%	8	0.0%	27
	OmyWALL13S	91.0%	1-ocean	13	0.0%	18	0.0%	31
09 UPPCOL	OmyWEL13	98.7%	1-ocean	12	0.0%	12	0.0%	24
U9_UPPCOL	OmyWTP12	88.1%	2-ocean	1	0.0%	0	0.0%	1
	OmyDWOR11S	95.3%	3-ocean	2	100.0%	2	100.0%	4
10_SFCLWR	OmyDWOR12S	96.3%	2-ocean	86	43.0%	43	83.0%	129
	OmyDWOR13S	96.5%	1-ocean	4	0.0%	40	0.0%	44
	OmyOXBO12S	98.4%	2-ocean	5	0.0%	2	0.0%	7
	OmyOXBO13S	97.1%	1-ocean	4	0.0%	14	0.0%	18
14 UPSALM	OmyPAHH12S	98.1%	2-ocean	10	0.0%	7	0.0%	17
14_UPSALIVI	OmyPAHH13S	99.5%	1-ocean	33	0.0%	40	0.0%	73
	OmySAWT12S	100.0%	2-ocean	3	0.0%	4	0.0%	7
	OmySAWT13S	99.7%	1-ocean	22	0.0%	29	0.0%	51

130 Estimated relative abundance and run-timing of sockeye salmon stocks in 2015

Relative stock abundance for sockeye salmon was estimated over a course of 10 statistical weeks (i.e. weeks 22-32) and were grouped to obtain a minimum of n=20 per group. A total of 812 sockeye salmon were sampled at Bonneville Dam in 2015 and were assigned to one of three genetic stocks (i.e., Okanogan, Wenatchee, and Snake) (Table 12). The Okanogan stock had the highest relative abundance (323,797), followed by the Wenatchee (178,325) and Snake

- 136 River stock (7,919) (Figure 13).
- We characterized the run-timing distributions of the three main genetic stocks of sockeye
 salmon (Figure 14). These stocks could be ordered by median run -timing date as follows:
- Wenatchee (6/24/15; ordinal day 175), Okanagan (6/25/15; ordinal day 176), and Snake River (6/28/15, ordinal day 179) (Table 12).
- 141

142

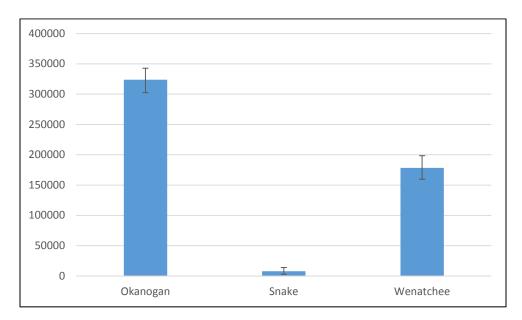
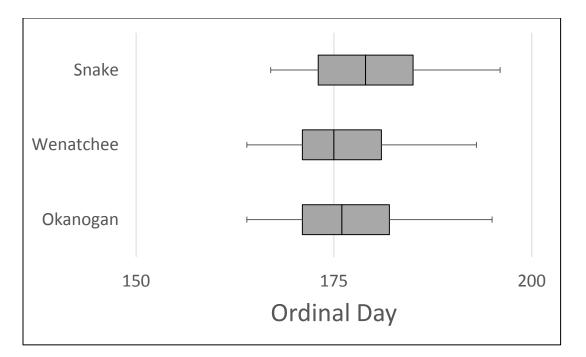



Figure 13: Relative abundance (± 95% CI) of sockeye salmon stocks sampled at Bonneville Dam
 in 2015.

146

Reporting		Estimated abundance			1st	3rd	5th	95th		Interquartile
Group	Ν	Mean	95% CI	Median	quartile	quartile	percentile	percentile	Median date	range
Okanogan	521	323797	302554-342981	176	171	182	164	195	06/25/15	11
Snake	10	7919	2948-13906	179	173	185	167	196	06/28/15	12
Wenatchee	281	178325	159747-198420	175	171	181	164	193	06/24/15	10
Total	812									

147 Table 12: Relative abundance and run-timing distributions of sockeye salmon stocks passing Bonneville Dam in 2015.

148

Figure 14: Run-timing distributions (median ordinal day, interquartile range, and 5th and 95th
 percentile) for sockeye salmon that were sampled at Bonneville Dam in 2015 and assigned to
 stock of origin.

152

153

154 Discussion

155 Parentage based tagging (PBT) and genetic stock identification (GSI) may be considered as methods that could replace the central functions of the coded wire tag program and could be a 156 replacement for adipose fin marking to identify hatchery origin fish. However, this replacement 157 would be contingent on continued genotyping of hatchery broodstock, fish passing Bonneville 158 Dam, and from harvested fish. For ocean fisheries management, additional hatcheries throughout 159 the range of Chinook salmon would have to contribute broodstock samples to this PBT baseline 160 in order for the method to serve ocean fisheries management and the need to monitor total 161 fishery impacts for stocks including Columbia River stocks of fall Chinook (tules and upriver 162 brights) harvested in ocean fisheries. The genetic methods provide a substantial amount of 163 information when they are combined and used to analyze Columbia River Chinook salmon and 164 steelhead passing Bonneville Dam. PBT improves the accuracy for defining hatchery-origin and 165 by subtraction, total natural-origin stocks. Genetic monitoring combining PBT and GSI is one of 166 a number of possible tools that can be used to identify hatchery and natural fish at various 167 168 resolutions. Other methods include, CWT's, PIT tags, VIE tags, and otolith marks. Adipose fin clips can be used to differentiate hatchery fish from wild fish either when fish are clipped at 169 100% or through expansions if stocks are not clipped at 100%. PBT can further discriminate 170 among hatchery stocks within the reporting groups that we use for GSI analyses, and so we can 171 now characterize different age-classes from particular hatcheries by run-timing distributions and 172 estimate their abundance at Bonneville Dam. GSI continues to provide information that would 173

not be possible with PBT, which is identification of all non-Snake River hatchery stocks as wellas all natural-origin stocks.

This long-term study will allow us to characterize trends in run timing and abundance of
steelhead and Chinook and sockeye salmon and provide this data to fisheries managers. We
were able to address the following F&W Program Management Questions:

179 What are the status and trend of adult productivity of fish populations?

180 What are your in-river monitoring results and what are your estimates of stock

181 composition and stock-specific abundance, escapement, catch, and age distribution?

Trapping at Bonneville Dam can only be done at very low rates due to restrictions placed on trap operations by USACE and NFMS. Low sample rates inhibit getting a representative sample of various stocks of fish. Higher sample rates would improve the precision of the estimates of fish at Bonneville Dam. Some fisheries were also sampled at very low rates.

We identified 13 hatchery stocks (45 hatchery broodstock sources) and 14 wild stocks of Chinook salmon estimated to have relative abundances \geq 1,000 fish passing Bonneville Dam in 2015. It may interest fisheries managers to know that the run-timing of the "spring-run" stocks contributed to the total abundance of adult and jack Chinook salmon that pass through the Columbia River mainstem in two management periods (i.e., spring and summer).

191 We identified five hatchery stocks (20 hatchery broodstock sources) and 11 wild stocks of steelhead estimated to have relative abundances $\geq 1,000$ fish passing Bonneville Dam in 2015. 192 193 We found that genetic stocks seemed to fit well into the historical management categories, especially the hatchery stocks. Genetic stocks included an early Skamania summer-run, an 194 intermediate run-timing category that contains most wild and hatchery steelhead stocks, and a 195 late run-timing category with stocks that exhibit median dates after August 25th and includes 196 South Fork Clearwater R. (Dworshak Hatchery), as well as wild stocks from upper Clearwater R, 197 and SF Salmon R. Characteristics of the steelhead that assigned to Snake River steelhead 198 199 hatchery broodstock sources generally support the typical A-run and B-run steelhead life history categories. The relatively large (\geq 78 cm) steelhead were found primarily to originate from 200 Dworshak hatchery broodstock. These fish were also relatively old (2-ocean-age) and were 201 derived from the Clearwater R., which is one of the regions expected to produce "B-run" 202 steelhead. It is notable that the MGILCS reporting group represents some fish both within and 203 outside the Snake River steelhead DPS, but does not represent all of the fish within the Snake 204 205 River DPS.

This was the fourth year we were able to analyze sockeye salmon using GSI. We estimated relative stock composition and stock abundance for sockeye passing Bonneville Dam in 2015, and found that the Okanogan stock has the greatest relative abundance, followed by the Wentachee and Snake River stocks. We also found that the migratory run timing of these stocks overlaps broadly at Bonneville Dam.

211

213 **References**

- 214
- Hess, J.E., N.R. Campbell, A.P. Matala, S.R. Narum. 2012. 2011 Annual Report: Genetic
- Assessment of Columbia River Stocks. U.S. Dept. of Energy Bonneville Power Administration
 Report Project #2008-907-00.
- 218
- Hess, J.E., N.R. Campbell, A.P. Matala, S.R. Narum. 2013. 2012 Annual Report: Genetic
- Assessment of Columbia River Stocks. U.S. Dept. of Energy Bonneville Power Administration
 Report Project #2008-907-00.
- Steele CA, Campbell MR, Ackerman M, McCane J, Hess MA, Campbell N, Narum SR. 2011.
- 223 Parentage Based Tagging of Snake River hatchery steelhead and Chinook salmon. Bonneville
- Power Administration. Annual Progress Report, Project number 2010-031-00.
- 225 https://research.idfg.idaho.gov/Fisheries%20Research%20Reports/Res11-
- 226 <u>111Steele2010%20Parentage%20Based%20Tagging%20Snake%20River%20Steelhead%20Sal</u>
- 227 <u>mon.pdf</u>
- 228

229 **Overall Conclusion**

This project combines four inter-related studies from the Fish & Wildlife Program Accords that address the following current and future objectives: 1) discover and evaluate SNP markers in salmon and steelhead and other anadromous fishes; 2) expand and create genetic baselines for multiple species including Chinook salmon, steelhead, sockeye salmon and kokanee, and coho salmon; 3) implement Genetic Stock Identification (GSI) programs for mainstem Chinook salmon, sockeye salmon, and steelhead fisheries and 4) GSI of fish passing Bonneville Dam (steelhead, sockeye, and Chinook salmon).

As described in Section 1, SNP panels continue to be expanded with GTseq that enables 237 genotyping large sample sizes (>125,000 fish genotyped in 2016). This new genotyping protocol 238 has greatly increased our laboratory's efficiency by allowing large numbers of fish to be 239 genotyped with large numbers of SNP loci but at lower costs. For genetic baseline expansion 240 (Objective 2), PBT hatcheries above Bonneville were genotyped to enable more thorough 241 assignment of hatchery origin fish. In addition, GSI baselines are being developed to include 242 two RAD-seq projects that have been initiated and will provide high density geographic 243 coverage of Chinook salmon and steelhead populations in the Columbia River Basin. SNPs 244 identified through these latter efforts will be useful in characterizing genetic diversity of hatchery 245 and wild Chinook salmon and steelhead stocks. This study included two broad applications of 246 stock identification; namely, stock composition of fisheries for Chinook salmon, sockeye 247 salmon, and steelhead (Objective 3), and stock composition of Chinook salmon, sockeye salmon, 248 249 and steelhead passing Bonneville Dam (Objective 4). Chinook salmon and steelhead fishery applications of GSI were integrated with the new genetic technology of parentage based tagging 250 (PBT). The challenge imposed by long histories of exogenous stock transfers from specific 251 hatchery programs often prevents effective application of GSI in assigning hatchery fish. 252 However, as the role of PBT is expanding to tag all hatchery fish, the role of GSI will be focused 253 on identifying stocks of natural-origin fish. 254

255 Our GSI analyses of harvest included stock composition results for the spring, summer, and fall management periods of Chinook salmon fisheries in the lower Columbia River 256 mainstem. Among selective fisheries issues, we continue to provide results to address a recent 257 258 concern of fishery managers related to an expansion of the Chinook salmon sport fishing 259 boundary around the mouth of the Wind River. Although our results could not be used to conclude that the Wind River sport fishery continues to primarily target its intended stock despite 260 261 the boundary change; we did find that the composition of this harvest was quite different from other fisheries conducted during the spring management period. 262

Sockeye salmon and steelhead fisheries were analyzed and our stock composition results will provide additional information to managers of these fisheries. However, the sockeye salmon results indicate an increase in sample size may be warranted to make accurate estimates of rare stocks such as Snake River sockeye salmon. Although it was possible to estimate stock proportions of Snake River sockeye salmon, the low sample sizes precluded our ability to conclude whether there are significant differences in proportions of this stock among fisheries and at Bonneville Dam.

For Objective 4, we used a combination of GSI and PBT to estimate run-timing distributions and relative abundance of hatchery and wild Chinook salmon and steelhead stocks in 2015. For sockeye salmon, we used GSI to estimate relative stock abundance and run-timing distributions. The stock-specific data on abundance and run-timing of these species were used as a context for interpreting harvest stock composition.