Integrating data to monitor life history diversity in Columbia Basin salmonids

Photo courtesy Aquarium of the Pacific

Stuart Willis Columbia River Inter-Tribal Fish Commission April 26, 2023 ITMD Meeting

Overview

- Genetics Lab Conceptual Workflow
- Steelhead age-at-maturity
 - Life history variation: age-at-first return ("maturity")
 - Why it matters: portfolio effects and unequal harvest
 - Identifying genetic markers for age-at-maturity in steelhead
- **Opportunities in conservation** •
 - Age at maturity markers
 - Run timing markers

Products and data sharing

Hagerman Genetics Lab: Common workflows

Paradigm: Putting fish back in the rivers

- Important
 Phenotypic
 Variation
- Manager
 Questions
- Traditional
 Ecological
 Knowledge

What genes influence a [heritable] phenotype?

Population structure/ assignment

> How strong is a marker-trait association?

> > Predict phenotypes

Whole genomic data of *distinct groups* (many genetic loci, few individuals)

Genotypes of neutral or candidate loci (fewer genetic loci, many individuals)

Locus (plural: loci): physical location on a chromosome
Gene: a locus exhibiting a function or effect, often coding a protein
Genotype: variants an individual has at each copy of a locus (one each from mom and dad), assessed using genetic markers
Phenotype: the physical characteristics (incl. behavior) of an individual; a.k.a. traits

Phenotypic & Environmental Data

Loci (genes) contributing to a trait → candidate markers

Data sharing + promotion

Association strength & patterns

Phenotypes across time

Fishery Composition

> Phenotypic & Environmental Data

Steelhead natural history: one size does not fit all (age/size at migration)

Steelhead: repeat spawners!

Original diagram design by Ilana Koch (Koch et al. 2018 Evolutionary Applications, 12725)

Spawn year

Poor migration or spawning conditions in spawn year 4

Original diagram design by Ilana Koch (Koch et al. 2018 Evolutionary Applications, 12725)

Spawn year

Original diagram design by Ilana Koch (Koch et al. 2018 Evolutionary Applications, 12725)

Spawn year

Heritability of age-at-first migration (age-at-maturity)

Sex

- Female
- Male
- unk

Ocean duration

- 1
- ▲ 2
- **a** 3
- + 4

Loci influencing age-at-maturity

Pool-seq: pooled [individualbarcoded] whole genomic libraries

Original Figure by Shawn Narum

PBT Age (parentage based tagging), *i.e. spawn year* of hatchery fish

Genetic Markers for Age-At-Maturity

Figure 4 from Waters, Narum, et al. 2021 Mol. Ecol.

Genetic Markers for AAM

4th Annulus 3rd Annulus 2nd Annulus 1st Annulus

Focus

image from fishbio.com

age

scale

Marker interrogation

Genetic Markers for AAM Marker interrogation

Genotype * covariates = fork length or t
ocean duration

- sex (genetic)
- migration phenology
- kinship
- population structure

Genetic Markers for Age-at-maturity

Results: SIX6 gene markers explain >10% of ocean age variation in a sex-specific manner

Spawn year

Original diagram design by Ilana Koch (Koch et al. 2018 Evolutionary Applications, 12725)

12

9

10

11

Conservation implications?

Longitude

Steelhead natural history: one size does not fit all

Run Timing

	arca of	if~	ot a		oci opolic
	Large er	16		ene	es: applic
	NAME	SEX	migration markers	%WINTER	
	OmyHOOD-2020-13353	Female		50%	Warm S
1	OmyHOOD-2020-13476	Female		50%	East For
1. a	OmyHOOD-2020-13226	Male		59%	Lastion
1.1	OmyHOOD-2020-13183	Female		64%	• Fish
	OmyHOOD-2020-13202	Male		86%	- FISH
	OmyHOOD-2020-13527	Male		86%	_ geno
	OmyHOOD-2020-13275	Female		86%	
-	OmyHOOD-2020-13345	Female		86%	migra
	OmyHOOD-2020-13382	Female		86%	
	OmyHOOD-2020-13355	Male		91%	Allov
1.	OmyHOOD-2020-13372	Male		91%	
1.0	OmyHOOD-2020-13387	Female		91%	of sti
1	OmyHOOD-2020-13410	Female		91%	
1	OmyHOOD-2020-13459	Female		91%	<u>run</u> f
	OmyHOOD-2020-13262	Male		82%	
	OmyHOOD-2020-13323	Male		77%	
	OmyHOOD-2020-13189	Male		100%	
	OmyHOOD-2020-13190	Female		100%	a thread and thread and the
	OmyHOOD-2020-13193	Female		100%	
17	OmyHOOD-2020-13211	Male		100%	
1 a	OmyHOOD-2020-13212	Female		100%	
1	OmyHOOD-2020-13220	Male		100%	
T.	OmyHOOD-2020-13224	Female		100%	
	OmyHOOD-2020-13245	Male		100%	
	OmyHOOD-2020-13248	Male		100%	
	OmyHOOD-2020-13260	Female		100%	
	OmyHOOD-2020-13277	Male		100%	
	OmyHOOD-2020-13314	Male		100%	
2	OmyHOOD-2020-13316	Female		100%	
	OmyHOOD-2020-13340	Female		100%	
	OmyHOOD-2020-13342	Female		100%	
	OmyHOOD-2020-13350	Female		100%	
	OmyHOOD-2020-13375	Male		100%	
	OmyHOOD-2020-13394	Female		100%	Hood River data cour

cations

prings Fisheries: k Hood winter-run stock:

caught at weir can be rapidly otyped to predict stock and ration-phenotype

ws identification and avoidance ray or introgressed <u>summer-</u> fish in broodstock

Results

Questions

Acknowledgements:

- **Collaborators at CRITFC, Warm Springs Fisheries,** • Idaho F&G
- Labmates at the Hagerman Genetics Lab •
- **Funding from Bonneville Power Administration** •

ORIGINAL ARTICLE | OPEN CACCESS CC ()

Steelhead (Oncorhynchus mykiss) lineages and sexes show variable patterns of association of adult migration-timing and age-at-maturity traits with two genomic regions

Stuart C. Willis^{1,*} 🗓 | Jon E. Hess¹ | Jeff K. Fryer² | John M. Whiteaker² | Chris Brun³ | Ryan Gerstenberger³ | Shawn R. Narum¹ 🝺

¹ Hagerman Genetics Laboratory, Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA

² Fishery Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR, USA

³ Branch of Natural Resources – Fisheries, Confederated Tribes of Warm Springs, Portland, OR, USA

Evol. Appl. 13 (10) 2836-2856

Genetic Markers for AAN Chinook

PINCSENUMATIL

