

CRITFC

TECHNICAL REPORT 22-03

Upstream Migration Timing of Columbia Basin Chinook and Sockeye Salmon and Steelhead in 2020

Jeffrey K. Fryer, John Whiteaker, Denise Kelsey, and Jon Hess September 30, 2022

Upstream Migration Timing of Columbia Basin Chinook and Sockeye Salmon and Steelhead in 2020

Columbia River Inter-Tribal Fish Commission Technical Report for BPA Project 2008-518-00, Contract 73354

Report date range: 1/20-12/20

Jeffrey K. Fryer John Whiteaker Denise Kelsey Jon Hess

September 30, 2022

ABSTRACT

Between May 21 and October 16, 2020, Chinook (*Oncorhynchus tshawytscha*) and Sockeye (*Oncorhynchus nerka*) salmon as well as steelhead (*Oncorhynchus mykiss*) were sampled at the Bonneville Dam Adult Fish Facility (AFF). Fish were measured for fork length, scales were collected for analysis of age, tissue samples collected for genetic analysis, and the fish were tagged with Passive Integrated Transponder (PIT) tags. These fish were tracked upstream as they passed through sites with PIT tag antennas, including fish ladders at dams, juvenile bypasses, hatcheries, and weirs, as well as in-stream antennas. Total numbers of fish tracked upstream were 194 spring Chinook, 1,074 summer Chinook, 2,003 fall Chinook, 1,474 steelhead, and 1,730 Sockeye Salmon. Our Spring Chinook sample size was greatly reduced as the US Army Corps of Engineers (which provides access to the AFF) did not allow sampling to begin at Bonneville Dam until May 21, 2020, by which time 71.6% of the spring Chinook run had already passed the site.

Chinook Salmon median migration rates between mainstem dams ranged between 17.6 km/day for fall Chinook migrating between Rock Island and Rocky Reach dams and 57.3 km/day for fall Chinook migrating between John Day and McNary dams. An estimated 42.3% of spring Chinook sampled after May 21, 2020, passed into the Snake Basin upstream of Ice Harbor Dam, while an estimated 69.9% of summer Chinook passed into the portion of the Columbia Basin upstream of Priest Rapids Dam. Among fall Chinook, the primary terminal area was between McNary Dam (passed by 56.4%), while Ice Harbor Dam had 9% pass and Priest Rapids Dam had 12.5% pass. Due to restricted sampling at Bonneville Dam during most of the spring Chinook migration, most of the statistics were not calculated for spring Chinook Salmon and are not reported.

Steelhead median migration rates reported between mainstem dams ranged from 3.0 km/day between Bonneville and John Day dams to 22.5 km/day between John Day and McNary dams. Among Steelhead classified as B-run (greater or equal to 78 cm fork length) that were last detected in terminal areas (tributaries between Bonneville and McNary Dam and above McNary Dam), 96.1% were detected in the Snake Basin. Based on the data reported, the percentage of steelhead classified as B-run at Bonneville Dam reached its highest level at 78.0% of the run in Statistical Week 40. The number of B-run steelhead peaked in Week

37 at 7,284 steelhead while the number of A-run (<78 cm) peaked in Week 31 at 13,172 fish. A total of 158 steelhead PIT tagged and tracked in 2020 were detected moving downstream (mostly in juvenile bypasses) after spawning, recovered or detected in kelt programs, or detected moving upstream in summer/fall 2020 or in 2021 and were designated as kelt.

For Sockeye the median migration rates between mainstem dams ranged between 30.1 (between Priest Rapids and Rock Island dams and 56.6 (between John Day and McNary dams) km/day for adults tagged at Bonneville Dam. Escapement estimates for the entire Sockeye run derived from PIT tag detections at mainstem Columbia River dams differ from those estimated by visual counts by -10.9% to 9.8% (does not include the lower Snake River dams).

The principal age components with percentage of run for summer Chinook were Age 1.2 (64.7%), 1.3 (12.8%) and Age 1.1 (10.3%) and for fall Chinook Age 0.3 (44.2%), and 0.2 (30.9%). The steelhead run was 45.0% Age 1.2, 24.0% r.2 (unreadable freshwater age and two years in saltwater) and 18.5% Age 2.2. The Sockeye run was 98.6% Age 1.2 with other age groups (1.1, 2.1, 1.3, and 2.2) comprising only 1.4% of the run.

Stray rates were estimated using both Genetic Stock Identification (GSI]) and Parental Based Tagging (PBT) and site of last PIT tag detection. The stray rate was 4.8% for PBT-classified steelhead and 20.5% for GSI-classified steelhead. For Chinook, the stray rate was 3.7% for PBT-classified Chinook and 7.6% for GSI-classified Chinook. For Sockeye, the stray rate estimated by this project using GSI was 1.6%. Insufficient numbers of Sockeye could not be classified by PBT, so a stray rate was not estimated.

ACKNOWLEDGMENTS

The following individuals assisted in this project: Victoria Boehlen, Maureen Kavanagh and Christine Petersen of the Bonneville Power Administration; David Graves, Doug Hatch, Brittney Oseth, Joe Nowinski, Jayson FiveCrows, Agnes Strong, Crystal Chulik, Travis Sproed, and Lamar Fairly-Minthorn of CRITFC; Ben Hausmann, Tammy Mackey, and Casey Welch of the US Army Corps of Engineers; and Alan Brower and Nicole Tancreto of the Pacific States Marine Fisheries Commission.

This report summarizes research funded by the Bonneville Power Administration under the Columbia Basin Fish Accords (2008-518-00) and the Pacific Salmon Commission.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	x
INTRODUCTION	13
Sampling Upstream Detection Site Detection Percentage Age Analysis Escapement Migration Rates and Passage Times Upstream Age and Length-at-Age Composition Estimates Fallback Night Passage Steelhead B-Run Analyses Steelhead Kelt Analyses Straying Whooshh FishL™ Recognition System (WFRS) Testing	14 15 19 20 20 21 21 22 22
RESULTS-CHINOOK Sample Size Distribution of Sample Detection Numbers Mainstem Dam Recoveries, Mortality, and Escapement Estimates Migration Rates and Passage Time Bonneville Dam Chinook Salmon Age Composition Upstream Age and Length-at-Age Composition Fallback Night Passage Straying	26 30 37 38 42 47 49
RESULTS-STEELHEAD	53 54 54 55

Migration Rates and Passage Time	62
Fallback	
Night Passage	64
B-Run Analyses	65
Kelt Analyses	68
Straying	81
RESULTS-SOCKEYE	84
Bonneville Sample Size and Upstream Detection	84
Age Composition	87
Upstream Recoveries, Mortality, and Escapement	88
Migration Rates and Passage Time	97
Night Passage	99
Fallback	
Straying	102
DISCUSSION	104
REFERENCES	106
APPENDIX A	108
ALL LINDIA A	
APPENDIX B	115
APPENDIX C	125
APPENDIX D	166

LIST OF TABLES

Table 1. Number of sampled and PIT tagged spring Chinook Salmon at Bonneville Dam
that were then tracked, by date and statistical week, in 202027
Table 2. Number of sampled and PIT tagged summer Chinook Salmon at Bonneville
Dam that were then tracked, by date and statistical week in 2020
Table 3. Number of sampled and PIT tagged fall Chinook Salmon at Bonneville Dam that
were then tracked, by date and statistical week in 2020
Table 4. Percentage of spring, summer, and fall Chinook Salmon tracked from
Bonneville Dam detected at or upstream of Columbia and Snake River dams in
2020
Table 5. Percentage of Chinook Salmon detected upstream that missed detection at
mainstem dams in 202035
Table 6. Spring, summer, fall, and total Chinook Salmon escapement at Columbia Basin
mainstem dams upstream of Bonneville Dam in 202035
Table 7. Percentage of Chinook sampled at Bonneville Dam as one race (as determined
by run timing) that passed upstream dams as another race (as determined by run
timing) in 202036
Table 8. Chinook Salmon escapement, as estimated using PIT tag detections, to
Tumwater, Prosser, and Roza dams in 202036
Table 9. Chinook Salmon migration rates between Columbia Basin dams estimated
using PIT tag data in 2020
Table 10. Median passage time in minutes by run, from the time of first detection to time
of last detection at a dam and the percentage of Chinook taking more than 12 hours
between first and last detection in 202038
Table 11. Weekly and total age composition of spring Chinook Salmon at Bonneville
Dam as estimated from scale patterns in 2020
Table 12. Weekly and total age composition of summer Chinook Salmon at Bonneville
Dam as estimated from scale patterns in 2020
Table 13. Weekly and total age composition of fall Chinook Salmon at Bonneville Dam
as estimated from scale patterns in 202041
Table 14. Unweighted age composition estimates of summer and fall Chinook Salmon at
mainstem Columbia Basin dams as estimated using upstream PIT tag detections
for Chinook sampled at Bonneville Dam and aged using scale pattern analysis in
202043
Table 15. Spring Chinook Salmon length-at-age composition, as estimated by PIT tag
detections at upstream dams of fish aged using scale pattern analysis that passed
Bonneville Dam on or before May 31 at Columbia and Snake River dams in 2020.
45
Table 16. Summer Chinook Salmon length-at-age composition, as estimated by PIT tag
detections at upstream dams of fish aged using scale pattern analysis that passed
Bonneville Dam between June 1-July 31 at Columbia and Snake River dams in
Z020
Table 17. Fall Chinook Salmon length-at-age composition, as estimated by PIT tag
detections at upstream dams of fish aged using scale pattern analysis that passed
Bonneville after July 31 for fall Chinook Salmon at Columbia and Snake River dams
in 202047
Table 18. Estimated minimum Chinook Salmon fallback rates by race at Columbia Basin
dams with PIT tag detection in 2020 as estimated by PIT tags48

Table 19. Frequency of fallback events for spring, summer, and fall Chinook Salmon
tagged by this project in 2020
Table 20. Chinook Salmon night passage (2000-0400) in 2020 at Columbia Basin dams
as estimated by PIT tag detections49
Table 21. Table showing final-PIT-fate categories by hatchery in 2020 using Parental
Based Tagging (PBT). Fate categories are categorized by color51
Table 22. Table showing final-PIT-fate categories by hatchery in 2020 using Genetic
Stock Identification (GSI). Fate categories are categorized by color
Table 23. Number of steelhead PIT tagged at Bonneville Dam and tracked past
Bonneville by date and statistical week in 202053
Table 24. Weekly and total age composition of steelhead at Bonneville Dam as
estimated from scale patterns in 202056
Table 25. Unweighted age composition of steelhead at mainstem dams in 2020 for
principle age groups (excluding those steelhead with freshwater zones where age
could not be determined)57
Table 26. Steelhead length-at-age composition at mainstem Columbia Basin dams, as
estimated by upstream PIT tag detections of steelhead sampled at Bonneville Dam
in 2020
Table 27. Most upstream detection by Statistical Week and region for steelhead tracked
by this study in 202060
Table 28 Percentages of steelhead passing a dam undetected that were subsequently
Table 28. Percentages of steelhead passing a dam undetected that were subsequently detected upstream in 202061
Table 29. Steelhead migration rate between Columbia Basin dams as estimated by PIT
tag detections in 2020
Table 30. Steelhead median passage times from time of first detection at a dam to time
of last detection and the percentage of steelhead taking more than 12 hours
between first detection and last detection in 2020
Table 31. Estimated minimum steelhead fallback at mainstem Columbia Basin dams in
2020 as estimated by PIT tag detections64
Table 32. Frequency of fallback events for steelhead tagged by this project in 202064
Table 33. Estimated steelhead night passage (2000-0400 PST) at Columbia Basin dams
in 2020
Table 34. Percentage and number of A- and B-run steelhead estimated at Bonneville
Dam by Statistical Week in 2020
Table 35. Ocean age composition of A- (<78 cm fork length) and B-Run (≥78 cm fork
length) steelhead sampled at Bonneville Dam in 2020 (weighted by run size)67
Table 36. Some biological and detection information on the steelhead moving in the
Columbia Basin system in 2020 that were determined to be kelts (CRITFC Kelt
Project) or repeat spawners and potential kelts (because of their behavior)70
Table 37. PIT tagged steelhead sampled at Bonneville Dam subsequently designated as
kelt by being last detected moving downstream the year after sampling or being last
detected moving upstream the year after sampling for sampling years 2009-2020.
80
Table 38. Ocean age composition of steelhead designated as kelt or non-kelt sampled at
Bonneville Dam in 202081
Table 39. Showing final-PIT-fate categories by stock as determined using PBT for fish
tagged in 2020. Fate categories are categorized by color
Table 40. Showing final-PIT-fate categories by stock as determined using GSI for fish
tagged in 2020. Fate categories are categorized by color
Table 41. Number of Sockeye Salmon sampled, and PIT tagged at Bonneville Dam and
tracked upstream by date and statistical week in 202085

Table 42. Percentage of Bonneville Dam PIT tagged Sockeye Salmon not detected at upstream dams and in-stream PIT tag arrays on their migration route for 2006-2020
Table 43. Weekly and total age composition of Sockeye Salmon at Bonneville Dam as
estimated from scale patterns in 2020
Table 44. Estimated survival of Sockeye Salmon PIT tagged at Bonneville Dam passing
upstream dams 2006-202090
Table 45. Survival of Sockeye Salmon PIT tagged as smolts at Rock Island Dam, on
their adult upstream migration from Bonneville Dam to upstream dams for years
· · · · · · · · · · · · · · · · · · ·
2008-2020
Table 46. Estimated Sockeye Salmon escapement from both PIT tags and visual means,
and the difference between the PIT tag and visual escapement estimate at
Columbia Basin dams in 202094
Table 47. Sockeye Salmon survival through selected reaches by statistical week as
estimated by PIT tag detections in 2020 and the p-value for a linear regression
between weekly reach survival and statistical week96
Table 48. Survival of Sockeye Salmon groups PIT tagged as juveniles from Bonneville
Dam to upstream dams with adults tagged by this study at Bonneville Dam included
for comparison in 202097
Table 49. Median Sockeye Salmon migration rates and travel time between dams as
estimated by PIT tag detections in 202098
Table 50. Adult Sockeye Salmon median travel time in days between dam pairs by
statistical week tagged at Bonneville Dam, the p-value for a linear regression
between travel time and statistical week, and mean travel time by stock as
estimated using PIT tags in 202098
Table 51. Sockeye Salmon median passage time (from time of first detection at a dam to
last detection at a dam) and the percentage of Sockeye Salmon taking greater than
12 hours between first detection and last detection at upstream dams in 202099
Table 52. Estimated Sockeye Salmon night passage (2000-0400) by stock at Columbia
River, Zosel, and Tumwater dams in 202099
Table 53. Estimated minimum fallback rates for Sockeye Salmon at dams in 2020. NA
indicates Sockeye Salmon were not detected at a dam outside the range of the
particular stock
Table 54. Number of fallback events by tag group for returning Sockeye Salmon tagged
as juveniles and Sockeye Salmon included in our Bonneville adult tagging study in
2020
Table 55. Showing final-PIT-fate categories by stock as determined using Genetics
Stock Identification for fish tagged in 2020. Fate categories are categorized by
color
Table 56. Total number of Chinook and Sockeye salmon and steelhead PIT tags tracked
, , , , , , , , , , , , , , , , , , ,
by year (includes recaptures of previously PIT tagged fish) 2009-2020104
Table C1. List of PTAGIS interrogation sites (three letter code, name, and description) to
use with maps that follow
Table C2. Season by season activities of steelhead tagged in 2020 and later labeled as
kelts or repeat spawners when they began migrating downstream (after March 31st)
and upstream in spring, summer, or fall of 2020, presumably to and from the
ocean
Table C3. Season by season activities of steelhead tagged in 2020 and later labeled as
kelts or repeat spawners when they began migrating downstream (before April 1st)
and upstream in spring, summer, or fall 2021, presumably to and from the
ocean134

Table C4. Season by season activities of steelhead tagged in past years 201	9 and 2018
(year 2017 was checked, but no new movements from fish) and later labe	led as kelts
or repeat spawners when they began migrating downstream and	upstream
presumably to and from the ocean	134
Table D1. Table showing picket lead protocols that affected sampling of sa	almonids in
2020. Pickets are used to direct fish into the trap ladder and the number	that can be
used is affected by temperature and fish abundance numbers	166

LIST OF FIGURES

Figure 1. PIT tag detection configuration at Priest Rapids Dam showing two adjoining
antennas at two weirs in each fish ladder (Figure from www.ptagis.org.)16
Figure 2. Pictures of the two types of PIT tag antennas at Bonneville Dam18
Figure 3. Site of Bonneville Dam PIT tag antennas and the most likely route for fish
tagged at the Adult Fish Facility to pass upstream undetected (Figure from
www.ptagis.org)19
Figure 4. The weekly spring Chinook sample and run as a percentage of the total
sample and run size at Bonneville Dam in 2020.
Figure 5. The weekly summer Chinook sample and run as a percentage of the total
sample and run size at Bonneville Dam in 2020
Figure 6. The weekly fall Chinook sample and run as a percentage of the total sample
and run size at Bonneville Dam in 2020
Figure 7. Map of the Columbia River Basin from Bonneville to Wells and Lower Granite
dams showing the number of summer Chinook Salmon PIT tagged at Bonneville
Dam, and the percentage of the run estimated to pass upstream dams in 202032
Figure 8. Map of the Columbia River Basin from Bonneville to Wells and Lower Granite
dams showing the number of fall Chinook Salmon PIT tagged at Bonneville Dam,
and the percentage of the run estimated to pass upstream dams in 2020
Figure 9. Distribution of final detection areas of the Columbia Basin by statistical week
for Chinook Salmon PIT tagged at Bonneville Dam in 202034
Figure 10. Percentage of Chinook Salmon by statistical week tagged at Bonneville Dam
in 2020 destined for the Tumwater Dam (Wenatchee River), Prosser Dam (Yakima
River) and Roza Dam (Yakima River) based on upstream PIT tag detections 37
Figure 11. Weekly age composition of Chinook Salmon at Bonneville Dam as estimated
from scale patterns in 2020 with weekly percentage of run
Figure 12. Weekly age composition of Chinook Salmon at Bonneville Dam as estimated
from scale patterns in 2020 with weekly percentage of run
Figure 13. Summer Chinook age composition at Columbia and Snake River dams
estimated using PIT tagged Chinook tracked by this project44
Figure 14. Fall Chinook age composition at Columbia and Snake river dams estimated
using PIT tagged Chinook tracked by this project44
Figure 15. The weekly steelhead sample and run as a percentage of the total sample
and run size at Bonneville Dam in 202054
Figure 16. Weekly age composition of steelhead at Bonneville Dam as estimated from
scale patterns for age classes in 2020 with weekly abundance
Figure 17. Unweighted age composition of steelhead at mainstem dams in 2020 for
principal age groups (evaluding these steelhead with freehunter zones where age
principal age groups (excluding those steelhead with freshwater zones where age
could not be determined)
Figure 18. Map of the Columbia River Basin from Bonneville to Wells and Lower Granite
dams showing the number of steelhead PIT tagged at Bonneville Dam, and the
percentage estimated to pass upstream dams in 202059
Figure 19. Most upstream detection by Statistical Week and region for steelhead tracked
by this study in 2020 as a percentage of the weekly run60
Figure 20. Most upstream detection by Statistical Week and region for steelhead tracked
by this study in 2020 as estimated by numbers of fish passing Bonneville Dam by
week61
Figure 21. Percentage of B-run steelhead and estimated A- and B-run escapement at
Bonneville Dam by statistical week in 202066

Figure 22. Most upstream detection site for B-run steelhead (≥78 cm fork length) by
Statistical Week they were sampled at Bonneville Dam in 2020
Figure 23. Percentage of run designated as kelt by week sampled in 2020 at Bonneville
Dam and the most upstream detection area
Statistical Week as estimated by this project in 2020
Figure 25. Weekly age composition estimates by Statistical Week for Sockeye Salmon
sampled at Bonneville Dam in 202088
Figure 26. Map of the Columbia River Basin showing the number of fish PIT tagged at
Bonneville Dam, and the percentage of the run estimated to pass upstream dams in
2020
Figure 27. Estimated percentage of Sockeye Salmon passing Bonneville Dam detected
at or upstream of The Dalles, John Day, McNary, Priest Rapids, Rock Island, Rocky
Reach, Wells, Zosel and Tumwater dams with 90% CI for Sockeye Salmon PIT
tagged as juveniles at Rock Island Dam and as adults at Bonneville Dam in 2020.
93
Figure 28. Annual estimated survival rate with 90% CI from Bonneville Dam to Priest
Rapids Dam for adult Sockeye Salmon tagged by this study and for returning
Sockeye Salmon tagged as juveniles at Rock Island Dam 2008-202093
Figure 29. Estimated PIT tag and visual count estimates of escapement at Columbia
River and Tumwater dams in 202095
Figure 30. Survival of Sockeye Salmon PIT tagged at Bonneville Dam to The Dalles,
John Day, McNary, Priest Rapids, and Rock Island dams by statistical week in
2020
Figure C1. Map of Columbia River interrogation sites that detected Chinook and Sockeye
salmon, and steelhead in 2020
number of spring Chinook Salmon detected
Figure C3. Map of Upper Columbia River (between the Snake River and Wells Dam)
detections sites and number of spring Chinook Salmon detected
Figure C4. Map of Upper Columbia River (Wells Dam and above) detections sites and
number of spring Chinook Salmon detected
Figure C5. Map of Lower Snake River detections sites (Salmon River not included) and
number of spring Chinook Salmon detected
Figure C6. Map of Salmon River detections sites and number of spring Chinook Salmon
detected140
Figure C7. Map of Lower Columbia River detections sites (below Snake River) and
number of summer Chinook Salmon detected141
Figure C8. Map of Upper Columbia River (between the Snake River and Wells Dam)
detections sites and number of summer Chinook Salmon detected
Figure C9. Map of Upper Columbia River (Wells Dam and above) detections sites and
number of summer Chinook Salmon detected
Figure C10. Map of Lower Snake River detections sites (Salmon River not included) and
number of summer Chinook Salmon detected
Figure C11. Map of Salmon River detections sites and number of summer Chinook
Salmon detected
number of fall Chinook Salmon detected146
Figure C13. Map of Upper Columbia River (between the Snake River and Wells Dam)
detection sites and number of fall Chinook Salmon detected

Figure C14. Map of Upper Columbia River detection sites (Wells Dam and above) an number of fall Chinook Salmon detected	
Figure C15. Map of Lower Snake River detection sites and number of fall Chinook Salmo	
detected	
Figure C16. Map of Lower Columbia and Snake rivers detection sites and number of Tul	e
fall Chinook Salmon detected15	
Figure C17. Map of Lower Columbia River detection sites (below Snake River) an	
number of steelhead detected	
Figure C18. Map of Upper Columbia River (between the Snake River and Wells Dam	
detection sites and number of steelhead detected	
Figure C19. Map of Upper Columbia River (Wells Dam and above) detection sites an	
number of steelhead detected	
Figure C20. Map of Lower Snake River detection sites (Salmon River not included) an	d
number of steelhead detected	
Figure C21. Map of Salmon River detection sites and number of steelhead detected . 15	
Figure C22. Map of Lower Columbia River detection sites (below Snake River) an	
number of Sockeye Salmon detected15	
Figure C23. Map of Upper Columbia River (between the Snake River and Wells Dam	
detection sites and number of Sockeye Salmon detected	
Figure C24. Map of Upper Columbia River (Wells Dam and above) detection sites an	
number of Sockeye Salmon detected15	
Figure C25. Map of Lower Snake River detection sites (Salmon River not included) an	
number of Sockeye Salmon detected15	9
Figure C26. Chart showing the pattern and location of fall back events at mainstem dam	
on the Columbia and Snake rivers for Chinook Salmon with PIT ta	
3DD.003D53B1B7, tagged and tracked in 2020	_
Figure C27. Chart showing the pattern and location of fallback events at mainstem dam	
on the Columbia and Snake rivers for Chinook Salmon with PIT ta	
3DD.003D53B0D2, tagged and tracked in 202016	1
Figure C28. Chart showing the pattern and location of fallback events at mainstem dam	
on the Columbia and Snake rivers for steelhead with PIT tag 3DD.003D3655DA	١,
tagged and tracked in 202016	2
Figure C29. Chart showing the pattern and location of fallback events at mainstem dam	s
on the Columbia and Snake rivers for steelhead with PIT tag 3DD.003D365A39	
tagged and tracked in 202016	3
Figure C30. Chart showing the pattern and location of fallback events at mainstem dam	S
on the Columbia and Snake rivers for Sockeye Salmon with PIT ta	
3DD.003D53AFED, tagged and tracked in 2020	
Figure C31. Chart showing the pattern and location of fallback events at mainstem dam	
on the Columbia and Snake rivers for Sockeye Salmon with PIT ta	_
3DD.003D365512, tagged and tracked in 202016	5

INTRODUCTION

Since 1985, the Columbia River Inter-Tribal Fish Commission (CRITFC) has been funded by the Pacific Salmon Commission (PSC) to sample Chinook (Oncorhynchus tshawytscha) and Sockeye (Oncorhynchus nerka) salmon at Bonneville Dam to determine age, length-at-age, and, in the case of Sockeye Salmon, stock composition (Fryer 2009). In 2004, CRITFC took over a similar longrunning steelhead (Oncorhynchus mykiss) sampling program at Bonneville Dam from Oregon Department of Fish and Wildlife (Whiteaker and Fryer 2008). The development and maturation of two new technologies, Passive Integrated Transponder (PIT) tags and genetic stock identification (GSI), have provided an opportunity to greatly expand the information obtained from our stock monitoring program at Bonneville Dam. PIT tag antennas are now installed in fish ladders at most mainstem Columbia and Snake River dams, as well as at dams and weirs on many of the Columbia Basin tributaries. By PIT tagging fish sampled at Bonneville Dam, we can track tagged fish upstream providing valuable information on migration timing and survival rates. Data on the movement of PIT tagged fish through Columbia Basin receivers is readily available to all managers and researchers on a near real-time basis through the PIT Tag Information System (PTAGIS) at www.ptagis.org. The information obtained by PIT tags can be further expanded by identifying the origin of the fish using GSI. Using these two technologies it becomes possible to determine migration timing, stray rates, and upstream survival on a stock-specific basis for Chinook and Sockeye salmon and steelhead.

The vast majority of PIT tagging in the Columbia Basin is conducted on juvenile salmonids captured at hatcheries, tributary smolt traps, or at dam juvenile bypasses. These tagging programs predominantly study downstream juvenile migration and survival through the hydrosystem, but rarely tag enough fish to assess survival of returning adults as they pass Bonneville Dam and migrate to the spawning grounds. There are also many salmon stocks in the Columbia Basin which are not PIT tagged, thus it is difficult to answer questions on upstream migration timing, straying, and survival for those stocks. Because our project randomly samples adult salmon and steelhead passing through the Bonneville Dam Adult Fish Facility (AFF) trap, this study tags salmonid stocks that have not previously been tagged and monitored.

METHODS

Sampling

Chinook and Sockeye salmon and steelhead were collected from May 21 through October 16, 2020, at the Bonneville Dam AFF, located adjacent to the Second Powerhouse at river km 234. This facility uses a weir with four pickets to divert fish ascending the Washington shore fish ladder into the AFF collection pool. An attraction flow is used to draw fish that enter the collection pool through a false weir where they then can be selected for sampling. Fish not selected, and fish that have recovered from sampling, migrate back to the Washington shore fish ladder above the pickets. An attempt was made to exclude minijacks (defined as Chinook spending no winters in saltwater) from the sample by not diverting Chinook Salmon into the sampling tank that were estimated to be less than 36 cm in length, and immediately releasing without sampling any fish diverted that turned out to be less than this threshold length. These small Chinook Salmon are excluded because sampling these fish would reduce our sample of larger Chinook as well as other species which are of more importance to managers. Also excluded from further analysis, other than reporting the site of final PIT tag detection, were any Chinook, Steelhead, and Sockeye Salmon that, based on scale analysis, did not spend a winter in saltwater.

Use of the AFF is restricted by protocols established by the Fish Passage Operation and Maintenance Coordination Team¹. These protocols include restrictions on the number of salmonids that can simultaneously be in the anesthetic and recovery tanks and restrict picket lead operations at higher fish abundances. At temperatures above 21.1°C (70.0°F), sampling is restricted to four days per week from 0600-1030 hours, the number of salmonids allowed in the anesthetic tank is reduced, and picket lead operations are changed to divert fewer fish into the AFF. Above 22.2°C (72.0°F) sampling is halted until the daily average water temperature drops to 21.16°C (71.9°F). Picket lead deployment is also restricted when abundance of salmonids or shad is high with further restrictions when abundance occurs at high temperatures (Appendix A).

https://pweb.crohms.org/tmt/documents/fpp/2020/final/FPP20_AppG_100820.pdf

¹ The protocols can be found at

Salmon and steelhead selected for sampling were diverted into a tank where they were anesthetized, examined for tags, fin clips, wounds, and condition. They were measured for fork length, and tissue and six scales (four scales for Sockeye) were collected for age analysis (Whiteaker and Fryer 2008, Kelsey et. al 2011). A small caudal clip for later genetic analysis was also collected (https://www.monitoringresources.org/Document/Method/Details/4087). Fish were scanned for PIT tags. If no tags were detected, standard techniques were used to inject PIT tags using a needle that penetrates the fish between the posterior tip of the pectoral fin and the anterior point of the pelvic girdle (CBFWA 1999). Tagged fish were then scanned for the PIT tag code, which was recorded if detected. If no tag was detected, no effort was made to re-tag the fish. Data on each PIT tagged fish was uploaded to www.ptagis.org.

Columbia Basin Chinook Salmon are classified by Bonneville Dam passage date as being spring, summer, or fall run. Spring Chinook are most commonly considered as those Chinook passing Bonneville Dam between March 15 and May 31 annually (FPC 2020), although for management purposes June 15 is used as the end date of the spring Chinook migration (https://www.fws.gov/lsnakecomplan/Reports/USvOregon/FINAL.2018-%202027%20USvOR%20Management%20Agreement%20with%20Signature%20Feb%202018%20.pdf). This report will use the May 31 date, although some comparisons using the June 15 date will be provided. Chinook passing Bonneville Dam on or after June 1 will be classified as summer Chinook, while those passing between August 1 and November 15 will be classified as fall Chinook Salmon.

Upstream Detection

As tagged salmon and steelhead continued their migration they were detected by PIT tag receivers located in the adult fish ladders at major Columbia Basin mainstem dams (Bonneville, The Dalles, John Day, McNary, Priest Rapids, Rock Island, Rocky Reach, and Wells dams on the Columbia River; Ice Harbor, Lower Monumental, Little Goose, and Lower Granite dams on the Snake River) as well as in numerous tributaries and hatcheries in the Columbia Basin (Appendix C – Table C1 and Figure C1). PIT tag detection data from these sites is uploaded to www.ptagis.org, which is then accessible to users of the site.

Almost all detection sites have multiple antennas, often laid out in parallel so that the antennas span a river or fishway in more than one location. We refer to each parallel antenna array as a "weir." Salmon can be detected more than once

as they pass over or through each weir. Each detection will subsequently be referred to as a "weir detection." The combination of all detections at the multiple weirs at a given site, regardless of the time between those detections, will subsequently be referred to as a "site detection." For example, the configuration of PIT tag antennas at Rock Island Dam is shown in Figure 1. Salmon or steelhead can pass this dam using any of three fish ladders. Each ladder has two weirs (referred to as baffles 2 and 4 at each ladder) with PIT tag detection and two antennas in each weir (numbered as 01 to 0C in hexadecimal format). If a fish

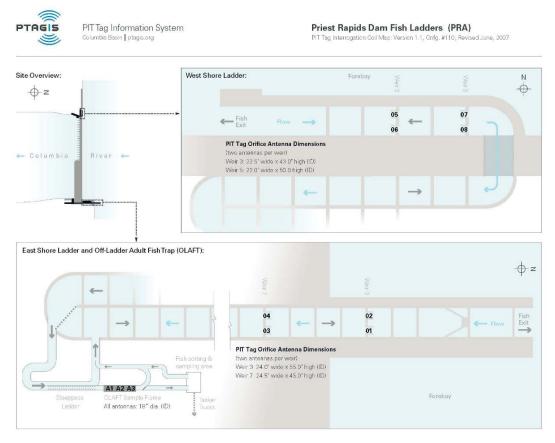


Figure 1. PIT tag detection configuration at Priest Rapids Dam showing two adjoining antennas at two weirs in each fish ladder (Figure from www.ptagis.org.)

ascended the left ladder and generated two detections at Baffle 2 and three at Baffle 4 (the words "baffle" and "weir" are interchangeable), this is five weir detections, but only one site detection (Rock Island Dam).

Site Detection Percentage

All fish PIT tagged and released at the Bonneville Dam AFF exit into a fish ladder with PIT tag antennas in both the upstream and downstream directions at site BO3. However, these antennas are at the underwater orifices with no

monitoring of overflow weirs (Figure 2) which many salmonids, especially Sockeye Salmon use. Furthermore, it is possible for any salmon that moves downstream following tagging could pass upstream through the navigation locks at Bonneville Dam (Figure 3). There are other dams with navigation locks (The Dalles, John Day, McNary, Ice Harbor, Little Goose, Lower Monumental, and Lower Granite dams) where PIT tagged salmon can pass undetected. The percentage of PIT tagged fish missed at each dam with PIT tag detection arrays was calculated by looking at the fish detected upstream of the site in question and estimating the percentage not detected at that site. For example, the percentage missed at Rocky Reach Dam was calculated as:

$$P = \frac{R_m}{R_d}$$

where R_m was the number of fishes missed at Rocky Reach Dam but detected upstream of Rocky Reach Dam and R_d was the number of fish detected upstream of Rocky Reach Dam.

PIT tag detection antennas in fish ladders are always placed in at least two locations in relatively close proximity. PIT tag interrogation maps (available at www.ptagis.org) indicate that these antennas are placed at vertical slots, weirs, or pools. To simplify the nomenclature, these locations will all subsequently be referred to as weirs.

Bonneville Dam Vertical Slot Antenna

Bonneville Dam underwater antenna with unmonitored overflow weir

Figure 2. Pictures of the two types of PIT tag antennas at Bonneville Dam. The vertical slot antennas are at the upper end of both ladders, while the underwater antennas are in the lower parts of the ladders. Photos courtesy of Alan Brower of PTAGIS.

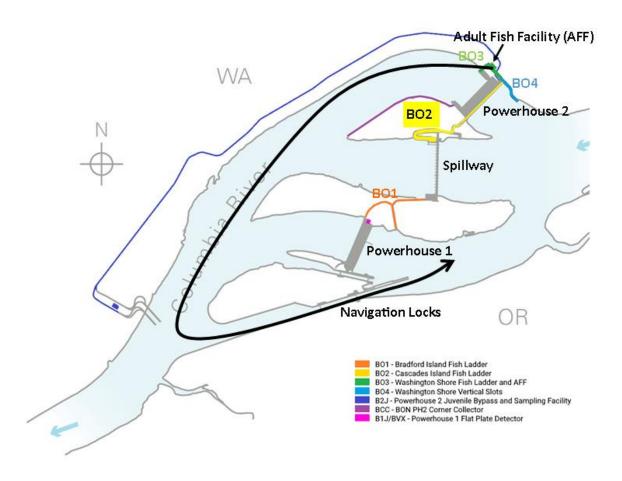


Figure 3. Site of Bonneville Dam PIT tag antennas and the most likely route for fish tagged at the Adult Fish Facility to pass upstream undetected (Figure from www.ptagis.org).

Age Analysis

Visual assessment of scale patterns was used to determine age composition through techniques developed for the Bonneville Stock Sampling project (Whiteaker and Fryer 2008, Kelsey et al. 2011). The European method for fish age description (Koo 1962) was used where the number of winters a fish spent in freshwater (not including the winter of egg incubation) is described by an Arabic numeral followed by a period. The number following the period indicates the number of winters a fish spent in saltwater. Total age, therefore, is equal to one plus the sum of both numerals. If poor scale quality, particularly in the freshwater, prevents age determination in all scales collected from a particular fish, no age is assigned. The exception is steelhead, where if saltwater age can be reliably determined, the age is designated as r.y where "y" is the saltwater age and "r" stands for regenerated. Any salmonid (Chinook, steelhead, or Sockeye) judged by scale analysis to have spent no winters in saltwater were excluded from further analysis.

Other sources of age information are available in the form of age since release, from PIT tags from salmonids tagged as juveniles, as well as the total age of salmonids that could be identified using Parental Based Tagging (PBT). In 2020, the PBT age was available when Chinook and steelhead were being aged and that information was considered in estimating a scale age.

Escapement

Chinook and Sockeye salmon escapements at upstream detection sites were estimated as:

$$N = \sum_{i} \frac{B_{i} R_{i}}{T_{i}}$$

where N was the estimated escapement at a particular upstream site, i was the week at Bonneville Dam, B_i was the weekly count of fish passing Bonneville Dam in week i, T_i was the number of fish PIT tagged at Bonneville Dam in week i, and R_i was the number of PIT tag detections at the dam where escapement was being estimated of those fish tagged in week i. Estimated dam counts using PIT tag data were compared with dam counts made at fish ladder viewing windows or weir counts. No estimates were made for steelhead because many overwinter between dams on their upstream migration making it difficult to compare PIT tag estimates with dam counts.

Migration Rates and Passage Times

Run timing was estimated using the date and time of detection between sites. Migration rates were calculated between sites as the time between the last detection at the first site and the first detection at the upper site. The amount of time required to pass each dam was estimated as the difference between the first detection time at a dam and the last detection time at the same dam.

Upstream Age and Length-at-Age Composition Estimates

The age composition at upstream locations was calculated as:

$$T_j = \sum_k A_{j,k} * W_k$$

where T_j was the estimate for age group j at a particular location, $A_{,j,k}$ was the percentage of fish for age group j in week k at Bonneville Dam (such that $\sum_j A_{j,k} = 1$) and W_k was the percentage of the run that passed Bonneville Dam in week k.

Fallback

Three methods were used to determine fallback, which is defined as a fish that ascends a fish ladder into the reservoir above the dam, then "falls back" to the downstream side of the dam either over the spillway, or through the navigation locks, juvenile bypass systems, or turbines. Migrating downstream through the fish ladders is not considered a fallback. The first method was if an adult salmon or steelhead was detected in the juvenile bypass system. However, on the Columbia River, only Bonneville, John Day, McNary, and Rocky Reach dams have juvenile bypass system PIT detection capability while all four dams in the Snake River have juvenile detection. Furthermore, there is no detection at any dam for fish falling back over the spillway or through the navigation locks or turbines. Therefore, a second method of estimating fallback was to look at each dam for fish detected at an "upper" weir followed by detection at a "lower" weir separated by more than two hours. At McNary and Bonneville dams, the upper detection weir is at the fish counting windows (which are believed to detect all passing PIT tagged fish), while the PIT tag detectors near the entrance to the fish ladder are the lower weirs. At Priest Rapids, Rock Island, Rocky Reach, and Wells dams, there are only two weirs with PIT tag detection in each fish ladder, so these were designated as the upper and lower detection weirs, even if they are not at the top or bottom of the ladders. At McNary and Bonneville dams, detection histories of fish detected at multiple ladders were also reviewed (MC1 and MC2 for McNary and BO1 and BO4 for Bonneville) (see http://www.ptagis.org for maps of sites). Finally, a third method of estimating fallback was ascertained by fish that passed an upstream PIT tag detector at a given dam but then were next observed at a site downstream of the dam in question. These methodologies will underestimate fallback as they do not include fish that fall back over a dam and are not subsequently detected.

Adult steelhead downstream movements on or after March 31, 2021, were not considered fallbacks; rather, they were considered kelts on their way downstream. Some steelhead move out of the system before April 1st, and with more detection sites added at dams and in-stream arrays placed in tributaries in the last few years, it has been easier to determine more kelts between March 1st and April 1st. Consideration of these fish as kelts versus assigning them as fallbacks is now part of the analysis process.

Night Passage

Fish counting at Columbia Basin dams is not consistent between dams. Salmonids passing Corps of Engineers-operated dams (Bonneville, The Dalles,

John Day, McNary, Ice Harbor, Lower Monumental, Little Goose and Lower Granite) are counted live by observers stationed at fish ladder viewing windows 50 minutes per hour (with the counts then expanded by 20% to account for the missing 10 minutes) from 0400 to 2000 PST with most supplemented with video counts of between 2000 and 0400 from June through September (https://www.fpc.org/111_sharedfiles/adult_metadatav3.php), which is the span of months that salmonids are tagged by this study. Salmonids passing Priest Rapids, Rock Island, Rocky Reach, and Wells dams are all counted 24 hours per day from recorded video. Tributary dam passage is estimated using 24-hour recorded video and/or counts at adult fish traps.

Night passage rates (where night is defined as 2000 to 0400 PST) were calculated based on the last time fish were detected in a fish ladder for all dams passed. This last time detected at a ladder was used as an approximation for passage time at the counting window, as the uppermost weir is closest to the fish counting window at nearly all ladders. (For maps of site configuration for mainstem dams see http://www.ptagis.org.)

Steelhead B-Run Analyses

For management purposes, Columbia Basin steelhead are commonly referred to as being either A- or B-run. B-run steelhead are defined as greater than or equal to 78 cm in length, while A-run steelhead are under 78 cm (Busby et al. 1996). B-run steelhead are generally older, spending three winters in saltwater compared to one or two winters for A-run steelhead, and generally pass Bonneville Dam after August 25, while A-run steelhead generally pass earlier (Busby et al. 1996). Upstream, run timing separation is not observed and the groups are separated based on size and age (Busby et al. 1996). B-run steelhead are thought to only be produced in the Clearwater, Middle Fork and South Fork Salmon rivers (Busby et al. 1996).

Analyses of B-run steelhead consisted of comparing the timing of the A- and B-runs at Bonneville Dam with the established August 25 criteria, comparing the length group of sampled steelhead with where they were last detected, and looking at the destination of B-run-sized steelhead by statistical week sampled at Bonneville Dam.

Steelhead Kelt Analyses

Steelhead differ from other salmonids studied in this project as they are

capable of spawning multiple times. After spawning in late winter or early spring, some steelhead will migrate downstream to the ocean to feed; these fish are known as kelt. The fish that survive return in a subsequent spawning season. We considered all steelhead detected moving downstream (mostly in juvenile bypasses) on or after March 31, the year after tagging, to be kelt and tabulated where they were last detected. We also carefully considered fish moving between March 1st and April 1st through juvenile bypasses and the Bonneville Corner Collector as kelts, especially when tag detections indicate they have visited upper reaches of tributaries in late winter early spring.

Straying

Since 2017, stray rates have been estimated by comparing PIT tag movements of steelhead and Chinook with GSI/PBT results. A matrix of final-PIT-fate categories (neutral, on-target, putative stray, and putative overshoot) was created where "neutral" fates indicate movements through the mainstem river corridor on route to their expected destination (basin-of-origin, population-of-origin, or hatchery-of-origin). "On-target" fates indicate fish that were last detected at their expected destination. "Putative stray" indicates fish that were last detected in tributaries or the mainstem that were outside of a normal route to their expected destination. "Putative overshoot" indicates when a fish may have gone into an area adjacent to its expected destination. Common examples of "putative overshoot" are Umatilla River Chinook last detected at McNary Dam and Priest Rapids Hatchery Chinook last detected at Priest Rapids Dam. The stray rate for a given stock was estimated as the number of "putative stray" fish divided by the sum of the "on-target" and "putative stray" fish for that stock. This is the template that we will build upon in future years.

Whooshh FishL™ Recognition System (WFRS) Testing

In 2019, Whooshh Innovations (WI) installed the WFRS at one exit flume at the AFF (Fryer et al. 2021). This system was designed by WI to capture images of passing fish to select fish for transport via the Whooshh passage system (www.whooshh.com). The WFRS was installed on the right (south) flume at the AFF downstream of the location where fish were diverted for sampling. Thus, the WFRS only collected images from those fish not selected for sampling for our studythat passed through that flume. Data collected included fork length, adipose fin presence or absence, and species for each fish imaged. These data from steelhead, Chinook, and Sockeye that were not sampled by our study were used

to compare with data from study sampled fish as well as to assess the potential for improving precision of estimates provided by our study.

Data from this system was used in 2019 to supplement data from our sample as well as to compare the length as well as the percentage adipose clipped of sampled versus bypassed Sockeye Chinook, and steelhead which passed through the Whooshh system.

We were looking forward to applying lessons learned from the WFRS in 2019 to enable us to take better advantage of the system in 2020, However, on Friday January 17, 2020, the USACE Operations Project Manager issued Whooshh a letter denying Whooshh's access request and required the system be removed by February 6, 2020. We were not informed of this until Monday, January 27 and we were unable to rally sufficient support to change this decision, thus Whooshh was removed early the week of February 3, 2022.

Loss of Spring Chinook Salmon Sampling

We were unable to sample spring Chinook in 2020 until May 21 due to the Corps of Engineers (COE) not allowing us to dispose of anesthetic water. This resulted in us missing the bulk of the spring Chinook run for the first time since we began this sampling in 1987, resulting in the following data losses for the region:

- 1.) Continuous 33-year dataset for age, growth, fin clip, and injury data for spring Chinook. This was our best dataset as we have no gaps due to high temperatures and face minimal trap restrictions and picket lead regulations due to fish abundance compared to other species or Chinook runs. Data had been collected since 1987.
- 2.) Continuous 30-year dataset for age, growth, fin clip, and injury data for the spring-summer Chinook transition. Data had been collected since 1990.
- 3.) Continuous 22-year dataset for age, growth, fin clip, and injury data for the entire Chinook run. Data had been collected since 1997.
- 4.) Continuous 12-year dataset of PIT tagging the transition from spring to summer Chinook which is of interest to managers. Data had been collected since 2008.
- 5.) Continuous 18-year dataset on spring Chinook genetics data used for genetics stock identification. Data had been collected since 2002.
- 6.) Continuous 8-year data set on spring Chinook genetics data used for Parental Based Tagging (PBT). Data had been collected since 2012.

Since 2017 this analysis has been conducted in-season for harvest analysis.

Email threads on this anesthetic water and sampling loss topic are in Appendix B, an overview is as follows:

- The first email regarding Aqui-S disposal was January 29, 2020, though changes to the Aqui-S disposal likely came up verbally around the time of the January FPOM meeting a couple of weeks earlier.
- The Bonneville Dam Project Biologists initially asked verbally if John Whiteaker could get discharge permits through the Yakama Nation since CRITFC is able to get WA state collection permits through the tribe.
- March 11 Whiteaker updated the Project Biologists that the Yakama
 Nation does not issue discharge permits and provided information from
 WA Ecology that disposal to the ground or sewer system was preferred
 and didn't require a permit. The Aqui-S Investigational New Animal Drugs
 (INAD) Study Protocol was also included and highlighted anesthetic
 disposal in the email.
- March 11-12 Whiteaker was put in contact with the Project
 Environmental Specialist and provided copies of our INAD Participation
 Letter and Study Protocol to both the Project Biologist and Environmental
 Specialist along with outlining the issue.
- April 1 The Environmental Specialist responds suggesting avoiding a
 permit by preferably discharging to the sewer, and that dumping to the
 ground at Bonneville Dam would be a worst case scenario.
- April 29 The Project Biologist responds that CRITFC cannot dump to the sewer.
- May 4 Whiteaker was informed by phone that CRITFC cannot dump anywhere on COE property. We were hoping to start sampling by May 5 Mid-April is the usual start of sampling.
- May 13 The Project Biologist sends a disposal solution email outlining information from the Aqui-S INAD Program Administrator, the Participation Letter, and disposal guidance from the Study Protocol. Whiteaker had already provided the same materials on March 11-12 but sent him a new copy anyway.
- May 21 sampling began with Aqui-S being disposed of on the ground.

RESULTS-CHINOOK

Sample Size

A total of 195 spring Chinook, 1,079 summer Chinook, and 2,023 fall Chinook Salmon were sampled between May 21 and October 16, 2020². (Tables 1-3). The spring Chinook sample was much smaller than usual due to the U.S. Army Corps of Engineers not allowing access to the Adult Fish Facility until May 21, which meant that this project missed sampling 71.7% of the run. Sampling restrictions due to water temperatures exceeding 21.1°C reduced sampling days and hours during Statistical weeks³ 32 through 36 of the fall Chinook run but never shut it down entirely as the water temperature never exceeded 22.2C. Restrictions on the number of pickets which could be lowered to divert fish into the AFF due to fish abundance affected sampling in weeks 23-28 and 37-40. A total of 191 spring Chinook, 1,067 summer Chinook, and 2,019 fall Chinook Salmon were PIT tagged (Tables 1-3). After adding previously tagged fish (which were sampled and therefore identified for the tracking study and included in our sample), subtracting fish that were not detected after release (due to shed tags, mortalities, malfunctioning tags, or PIT tagged Chinook missing PIT tag antennas), and excluding 2 summer Chinook and 6 fall Chinook classified as minijacks, the numbers of Chinook tracked upstream and used in analysis consisted of 194 spring Chinook, 1074 summer Chinook, and 2004 fall Chinook Salmon (Table 1-3). One summer Chinook (3DD.003D365361) was sampled twice during Week 23, once on June 2 with the next subsequent detection entering the Bonneville fish trap on June 4, 2022. The second sampling event was excluded from further analysis as it seems likely that this downstream movement after tagging was a result of the tagging process.

-

² An addition 150 Tule Chinook (identified by their dark coloration) were sampled between August 20 and October 24 for a genetics study and are not included in the results but will be briefly summarized in the discussion.

³ Statistical weeks are sequentially numbered calendar-year weeks. Excepting the first and last weeks of most years, statistical weeks are seven days long beginning on Sunday and ending on Saturday. In 2020, for instance, Statistical Week 23 began on May 31 and ended on June 6.

Table 1. Number of sampled and PIT tagged spring Chinook Salmon at Bonneville Dam

that were then tracked, by date and statistical week, in 2020.

						viously igged		ase		Days Sampling Restrictions in Effect			
Sample Dates	Week	Percentage of Run	Number Sampled	Number Tagged	By this study at AFF	By other Studies	Mortalities	Not Detected After Release	Total Tracked	Reduced Sampling- Temperature	Reduced Sampling- Shad or Salmonid Abundance	Sampling not- Allowed by COE	
No Sampling	16	1.9%	0	0								5	
No Sampling	17	4.5%	0	0								5	
No Sampling	18	17.9%	0	0								5	
No Sampling	19	27.8%	0	0								5	
No Sampling	20	17.6%	0	0								5	
5/21-5/22	21	12.4%	34	34	0	0	0	0	34	0	0	3	
5/26-29	22	18.0%	161	157	0	4	0	1	160	0	0	0	
Total			195	191	0	4	0	1	194	0	0	28	

Table 2. Number of sampled and PIT tagged summer Chinook Salmon at Bonneville Dam that were then tracked, by date and statistical week in 2020.

Days Sampling **Previously** Restrictions in **Tagged Effect** ō Not Detected After Release No Sampling-Temperature Reduced Sampling-Shad Salmonid Abundance **Excluded as Minijacks** Reduced Sampling-Temperature Percentage of Run **Number Sampled** By other Studies Sampling Dates **Number Tagged** By this study at AFF **Total Tracked** Mortalities Week 6/1-6/5 10.1% 6/8-6/12 12.4% 6/15-6/19 16.3% 6/22-6/26 19.5% 6/29-7/2 15.2% 7/9-7/10 9.7% 7/13-7/17 7.7% 7/20-7/24 5.3% 7/27-7/30 3.8% Total Table 3. Number of sampled and PIT tagged fall Chinook Salmon at Bonneville Dam that

were then tracked, by date and statistical week in 2020.

						iously ged		se			Days Sampling Restrictions in Effect		
Sampling Dates	Week	Percentage of Run	Number Sampled	Number Tagged	By this study at AFF	By other Studies	Mortalities	Not Detected After Release	Excluded as Minijacks	Total Tracked	Reduced Sampling- Temperature	Reduced Sampling- Shad or Salmonid Abundance	No Sampling- Temperature
8/3-8/6	32	0.9%	70	69	0	1	0	1	0	69	4	0	1
8/10-13	33	0.7%	42	42	0	0	0	0	1	41	4	0	1
8/17-8/20	34	5.7%	161	161	0	0	0	1	2	158	4	0	1
8/24-8/27	35	10.8%	171	171	0	0	0	1	0	170	4	0	1
8/31-9/3	36	25.5%	293	292	0	1	4	2	0	287	4	0	1
9/9-9/11	37	19.1%	145	144	0	1	0	0	0	145	0	3	0
9/14,9/16-18	38	15.4%	265	264	1	0	0	0	0	265	0	4	0
9/21-9/25	39	10.1%	285	285	0	0	0	0	0	285	0	3	0
9/28-10/2	40	5.5%	265	265	0	0	0	1	3	261	0	2	0
10/5-10/9	41	3.6%	251	251	0	0	1	2	0	248	0	0	0
10/13-16	42	2.5%	75	75	0	0	0	0	0	75	0	0	0
Total			2023	2019	1	3	5	8	6	2004	20	12	5

Distribution of Sample

The weekly distribution of spring Chinook sampled at Bonneville Dam differed greatly from the actual run distribution due to the closure of the AFF into Week 21 (Figure 4). The summer Chinook sample was reduced in Weeks 24 through 28 due to concurrent Sockeye sampling (Figure 5), similarly fall Chinook were reduced in weeks in which steelhead were sampled (Figure 6). Sample sizes in weeks 36-38 were sampled primarily under protocols c) and d) which required leaving pickets up for some or all of the day due to high abundance and water temperatures above 21.1C which likely reduced our sample size. Details on picket lead protocols can be found in Appendix D. In addition, poor air quality caused by nearby forest fires reduced sampling hours in this period for the health of the technicians.

Figure 4. The weekly spring Chinook sample and run as a percentage of the total sample and run size at Bonneville Dam in 2020. AFF regulations require reduced sampling at 21.1°C with sampling halted at 22.2°C.

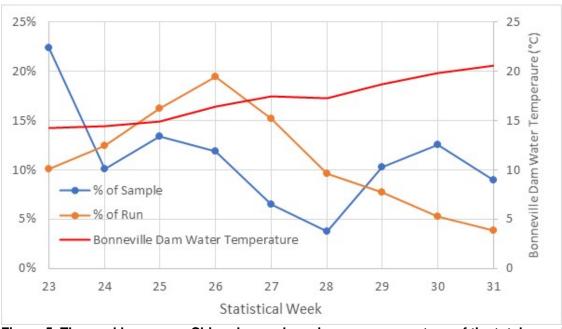


Figure 5. The weekly summer Chinook sample and run as a percentage of the total sample and run size at Bonneville Dam in 2020. AFF regulations require reduced sampling at 21.1°C with sampling halted at 22.2°C.

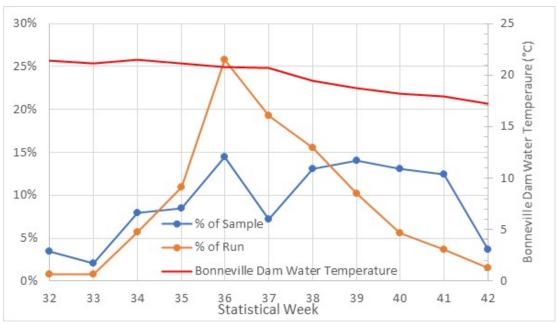


Figure 6. The weekly fall Chinook sample and run as a percentage of the total sample and run size at Bonneville Dam in 2020. AFF regulations require reduced sampling at 21.1°C with sampling halted at 22.2°C.

Detection Numbers

The tracking of 194 spring Chinook generated 13,751 weir detections, which were grouped into 1,461 site detections at 81 sites. The 1,074 summer Chinook generated 117,174 weir detections, grouped into 8,702 site detections at 102 sites, and the 2,004 fall Chinook generated 73,950 weir detections grouped into 9,016 site detections at 52 sites. Maps and table of sites found in the Appendix C (Table C1 and Figures C1, C2-C15) show the sites and the categorical ranges of detection numbers at the sites throughout the Columbia Basin. Note that the number of Chinook tracked in each run is determined by the migration timing at Bonneville, with the spring Chinook run ending May 31st, the summer Chinook running from June 1 through July 31st, and the fall Chinook run starting August 1st (FPC 2021) with minijacks and Tules excluded.

Mainstem Dam Recoveries, Mortality, and Escapement Estimates

Chinook bound for the Snake River predominated among the last two weeks of the Spring Chinook run we were permitted to sample (Table 4). Summer Chinook were predominantly last detected upstream in terminal areas upstream of Priest Rapids Dam and fall Chinook in spawning areas between McNary and Ice Harbor/Priest Rapids dams (Table 4, Figures 7-8). The early run was primarily last detected downstream of McNary Dam, transitioning to a run bound for the Snake River, peaking in Week 21 (Figure 9). Beginning in early June, summer Chinook

bound for above Priest Rapids dam predominated with the percentage decreasing in late July when sampling was halted. Chinook last detected downstream of McNary dam comprised the majority of the run though Statistical Week 38, with fall Chinook last detected at areas between McNary and Ice Harbor/Priest Rapids dams predominated (Table 4, Figure 9). This area is the location of Ringold and Priest Rapids hatcheries, which rear fall Chinook Salmon as well as the spawning grounds of Hanford Reach wild fall Chinook.

Table 4. Percentage of spring, summer, and fall Chinook Salmon tracked from Bonneville Dam detected at or upstream of Columbia and Snake River dams in 2020.

	Spring Chinook		
Dam	(May 21-31 only)	Summer Chinook	Fall Chinook
The Dalles	77.1%	89.8%	70.5%
John Day	73.7%	84.3%	60.4%
McNary	67.5%	82.2%	56.4%
Priest Rapids	14.7%	69.9%	12.5%
Rock Island	14.7%	68.8%	5.3%
Rocky Reach	8.3%	62.4%	4.5%
Wells	6.8%	51.2%	3.3%
Ice Harbor	42.3%	11.1%	9.0%
Lower Monumental	42.0%	10.9%	8.7%
Little Goose	41.2%	10.6%	8.5%
Lower Granite	40.8%	10.6%	8.4%

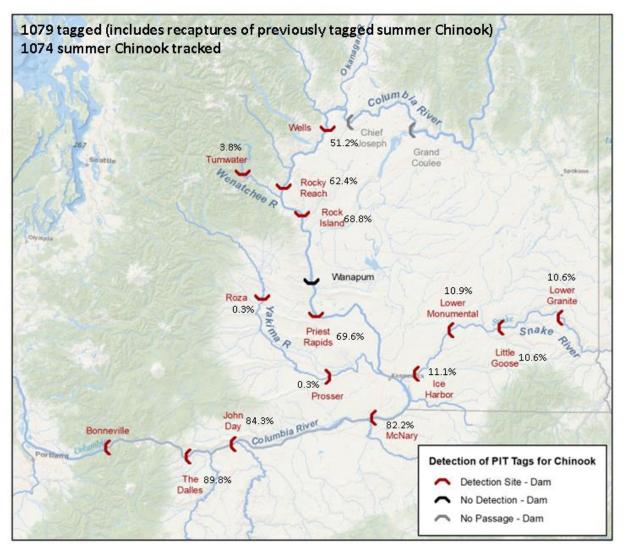


Figure 7. Map of the Columbia River Basin from Bonneville to Wells and Lower Granite dams showing the number of summer Chinook Salmon PIT tagged at Bonneville Dam, and the percentage of the run estimated to pass upstream dams in 2020.

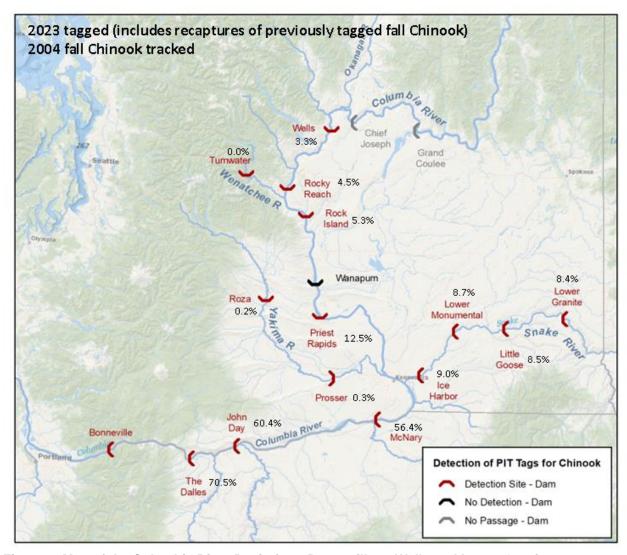


Figure 8. Map of the Columbia River Basin from Bonneville to Wells and Lower Granite dams showing the number of fall Chinook Salmon PIT tagged at Bonneville Dam, and the percentage of the run estimated to pass upstream dams in 2020.

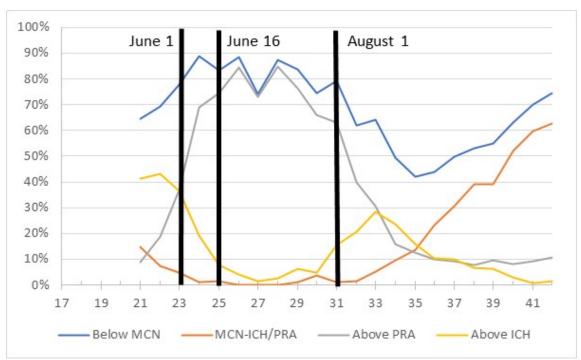


Figure 9. Distribution of final detection areas of the Columbia Basin by statistical week for Chinook Salmon PIT tagged at Bonneville Dam in 2020. Dates used to differentiate spring, summer, and fall Chinook are shown, with both June 1 and June 16 used to differentiate spring and summer Chinook.

The mean percentage of PIT tagged Chinook Salmon passing mainstem Columbia and Snake River dams without detection, was 0.2% for the last two weeks of the spring Chinook migration, 0.7% for summer Chinook and 1.0% for fall Chinook (Table 5). Bonneville, The Dalles, John Day, McNary, Ice Harbor, Lower Monumental, Little Goose, and Lower Granite dams all have navigation locks where it is possible that PIT tagged fish could pass upstream undetected.

The mean deviation between total Chinook escapement estimates based on PIT tags and those estimated by visual counts was 1.0% for summer Chinook and 30.2% for fall Chinook (Table 6).

Table 5. Percentage of Chinook Salmon detected upstream that missed detection at mainstem dams in 2020.

Dam	Spring	Summer	Fall
Bonneville	0.0%	0.1%	0.1%
The Dalles	0.0%	0.6%	2.3%
John Day	0.7%	1.8%	0.8%
McNary	0.8%	0.9%	0.5%
Priest Rapids	0.0%	0.0%	0.0%
Rock Island	0.0%	1.3%	0.0%
Rocky Reach	0.0%	0.0%	0.0%
Wells	0.0%	0.0%	0.0%
Ice Harbor	0.0%	1.3%	1.1%
Lower Monumental	0.0%	0.7%	2.3%
Little Goose	0.0%	0.7%	0.6%
Lower Granite	0.0%	0.0%	0.0%
Weighted Mean	0.2%	0.7%	1.0%

Table 6. Spring, summer, fall, and total Chinook Salmon escapement at Columbia Basin mainstem dams upstream of Bonneville Dam in 2020. Estimates are from both PIT tag recoveries and dam counts (FPC 2021). Due to restricted sampling at Bonneville Dam during most of the spring migration, statistics were not calculated for spring or total Chinook Salmon.

	Sprin	g Chinook	Salmon	Summ	er Chinook	Salmon	
Site	Viewing Window Count	PIT Tag Estimate	Percent Difference	Viewing Window Count	PIT Tag Estimate	Percent Difference	
The Dalles	46,016	NA	NA	88,238	89,738	1.7%	
John Day	43,111	NA	NA	79,535	84,205	5.5%	
McNary	37,498	NA	NA	77,726	82,157	5.4%	
Priest Rapids	5,962	NA	NA	72,056	69,878	-3.1%	
Rock Island	8,388	NA	NA	73,271	68,704	-6.6%	
Rocky Reach	4,477	NA	NA	67,320	62,383	-7.9%	
Wells	6,258	NA	NA	52,542	51,166	-2.7%	
Ice Harbor	24,772	NA	NA	8,690	11,130	21.9%	
L. Monumental	26,339	NA	NA	8,434	10,855	22.3%	
Little Goose	26,001	NA	NA	9,139	10,633	14.0%	
Lower Granite	26,011	NA	NA	8,775	10,581	17.1%	
Mean (weighted)						1.0%	
	Fall	Chinook Sa	almon	Total Chinook Salmon			
The Dalles	203,071	248,213	18.2%	337,325	NA	NA	
John Day	150,230	212,537	29.3%	272,876	NA	NA	
McNary	122,575	198,458	38.2%	237,799	NA	NA	
Priest Rapids	19,569	43,975	55.5%	97,587	NA	NA	
Rock Island	5,936	18,525	68.0%	87,595	NA	NA	
Rocky Reach	4,558	15,740	71.0%	76,355	NA	NA	
Wells	2,413	11,562	79.1%	61,213	NA	NA	
Ice Harbor	27,290	31,603	13.6%	60,752	NA	NA	
L. Monumental	27,207	30,710	11.4%	61,980	NA	NA	
Little Goose	23,596	30,047	21.5%	58,736	NA	NA	
Lower Granite	21,766	29,506	26.2%	56,552	NA	NA	
Mean (weighted)			30.2%				

35

Major deviations between race classifications based on passage date were largest for Bonneville summer Chinook passing upstream of Lower Granite, Lower Monumental, Little Goose, and Ice Harbor dams as spring Chinook Table 7.

Table 7. Percentage of Chinook sampled at Bonneville Dam as one race (as determined by run timing) that passed upstream dams as another race (as determined by run timing) in 2020. Due to restricted sampling at Bonneville Dam during most of the spring migration,

statistics were not calculated for spring or total Chinook Salmon.

Last Date		Race at Bonneville	Spring	Summer	Summer	Fall
Spring Run	First Date Fall Run	Race at Dam Listed Below	Summer	Spring	Fall	Summer
June 3	August 4	The Dalles	NA	0.0%	0.7%	0.0%
June 5	August 6	John Day	NA	1.5%	1.3%	0.1%
June 8	August 9	McNary	NA	2.7%	1.2%	1.2%
June 13	August 14	Priest Rapids	NA	0.1%	0.7%	1.0%
June 17	August 18	Rock Island	NA	0.3%	0.7%	0.9%
June 19	August 20	Rocky Reach	NA	0.6%	1.1%	1.6%
June 28	August 29	Wells	NA	3.9%	1.2%	3.1%
June 11	August 12	Ice Harbor	NA	15.1%	4.6%	3.3%
June 13	August 14	L. Monumental	NA	18.8%	6.0%	2.0%
June 15	August 16	Little Goose	NA	17.8%	6.8%	3.4%
June 17	August 18	Lower Granite	NA	19.9%	5.5%	3.4%

As in past years, dam escapement estimates for three tributary dams (Tumwater Dam on the Wenatchee River and Prosser and Roza dams on the Yakima River), were compared with estimates from visual counts (Table 8). The deviations of the PIT tag escapement estimate from visual counts at these dams were generally much greater than those at mainstem dams. Much lower sample sizes (as well as no sampling during most of the migration season) than at mainstem dams likely contributed to this difference. Chinook that ultimately passed these three dams primarily passed Bonneville Dam in the spring and, to a lesser extent, in the fall (Figure 10).

Table 8. Chinook Salmon escapement, as estimated using PIT tag detections, to Tumwater, Prosser, and Roza dams in 2020

Location and River	Number of Tag Detections	Escapement Estimate from Visual Counts	Estimated Escapement Using PIT Tags	Percent Difference
Tumwater Dam, Wenatchee River	49	4051	4487	10.8%
Prosser Dam, Yakima River	21	5366	2991	-44.3%
Roza Dam, Yakima River	12	2257	2287	1.3%

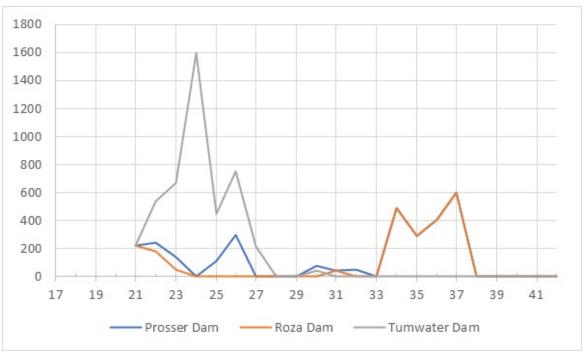


Figure 10. Percentage of Chinook Salmon by statistical week tagged at Bonneville Dam in 2020 destined for the Tumwater Dam (Wenatchee River), Prosser Dam (Yakima River) and Roza Dam (Yakima River) based on upstream PIT tag detections.

Migration Rates and Passage Time

Chinook migration rates between mainstem dams in 2020 ranged between 17.6 km/day for fall Chinook between Rock Island and Rocky Reach dams and 57.3 km/day for fall Chinook between John Day and McNary dams (Table 9) when comparing all three races of Chinook.

Among the mainstem Columbia and Snake River dams, Chinook Salmon had the greatest median dam passage time (as determined by minutes between first detection time and last detection time at a dam) at Wells Dam for spring and summer Chinook and at Lower Granite Dam for fall Chinook (Table 10). At Bonneville, Lower Granite, McNary, Rocky Reach and Wells dams, there is a greater distance between the furthest downstream and furthest upstream PIT tag detection antennas than at other dams; conversely, the distance between the PIT tag detection antennas at most other dams are placed at adjacent or nearby weirs. Passage times at Lower Granite, Bonneville, Priest Rapids, Tumwater, and Wells dams may also be inflated by trapping operations that take place at fish ladders at those dams. Sample sizes for spring Chinook were small; for example, spring Chinook had a median time of over 3 hours to pass Tumwater Dam, but n=10.

Table 9. Chinook Salmon migration rates between Columbia Basin dams estimated using PIT tag data in 2020.

		Median M	igration Rate	(km/day)
Between Mainstem Dams	Distance (km)	Spring Chinook	Summer Chinook	Fall Chinook
Bonneville-The Dalles	74	34.1	36.8	36.9
The Dalles-John Day	39	26.7	29.3	35.8
John Day-McNary	123	45.8	51.9	57.3
McNary-Priest Rapids	169	24.6	33.1	25.5
Priest Rapids-Rock Island	124	27.6	26.0	22.3
Rock Island-Rocky Reach	33	24.2	28.8	17.6
Rocky Reach-Wells	67	18.8	28.8	25.6
Bonneville-John Day	113	28.4	30.1	36.3
Bonneville-McNary	236	33.8	38.6	40.6
Bonneville-Priest Rapids	405	23.8	34.5	31.5
Bonneville-Wells	596	22.0	30.1	30.5
Bonneville-Ice Harbor	304	34.2	34.4	42.6
Bonneville-Lower Granite	461	31.4	32.7	38.0
Priest Rapids-Wells	191	22.4	26.2	23.2
McNary-Ice Harbor	68	32.1	32.8	39.4
Ice Harbor-Lower Granite	157	26.4	30.2	32.2
To and Between Tributary Sites				
Rock Island - Tumwater	68	2.0	3.3	NA
McNary - Prosser	145	26.9	9.0	8.9
Prosser - Roza	130	11.9	21.6	NA
Lower Granite - South Fork Salmon (SFG)	375	16.4	22.6	NA

Table 10. Median passage time in minutes by run, from the time of first detection to time of last detection at a dam and the percentage of Chinook taking more than 12 hours between first and last detection in 2020.

	Median Pa	ssage Time	(minutes)	Percentage of run with more than 12 hours between first and last detection at a dam					
Dam	Spring Chinook	Summer Chinook	Fall Chinook	Spring Chinook	Summer Chinook	Fall Chinook			
Bonneville	70.5	82.2	70.7	9.8%	7.2%	3.3%			
The Dalles	0.1	0.1	0.1	2.7%	2.4%	1.3%			
John Day	1.2	0.1	0.1	4.2%	3.9%	2.1%			
McNary	107.1	85.2	80.4	9.8%	4.5%	5.1%			
Priest Rapids	4.6	6.6	4.6	0.0%	1.7%	11.6%			
Rock Island	56.7	43.4	162.6	7.4%	11.0%	21.8%			
Rocky Reach	12.5	11.3	16.3	0.0%	5.0%	3.1%			
Wells	225.9	107.0	97.3	35.7%	12.0%	2.4%			
Ice Harbor	3.5	3.9	2.0	8.4%	5.9%	1.1%			
Lower Monumental	0.4	0.8	0.2	3.7%	8.1%	2.4%			
Little Goose	0.1	0.1	0.0	5.0%	4.8%	4.1%			
Lower Granite	102.8	103.3	149.6	3.8%	6.8%	13.7%			
Prosser	0.2	5.7	4.7	0.0%	0.0%	0.0%			
Roza	1.9	2.3	NA	16.7%	0.0%	NA			
Tumwater	184.9	24.4	NA	40.0%	18.4%	NA			

Bonneville Dam Chinook Salmon Age Composition

Spring Chinook sampling was only conducted in the last two weeks of the run representing only 30.4% of the run. Age 1.2 was the dominant age group in

both weeks (Table 11). The age composition for the other 69.6% of the run is unknown. The dominant age class for summer Chinook was also 1.2, comprising an estimated 64.7% of the summer Chinook population (Tables 12, Figure 11). The predominant age class for fall Chinook was 0.3 at an estimated 44.2% of the population (Table 13). The percentage of yearling freshwater (Age 1.x) Chinook was at or near 100% through Week 23, then began to decline through the rest of the year, with the percentage of subyearling freshwater Chinook (0.x) showing the opposite trend (Figure 12). The first week that Age 0.x Chinook predominated was Week 32 at 54.5% of the run.

Table 11. Weekly and total age composition of spring Chinook Salmon at Bonneville Dam as estimated from scale patterns in 2020. Composite estimates were not calculated due to

the very limited spring Chinook sampling we were allowed to conduct.

_				Brood Year ar	nd Age Class	
	Percent	Number	2017	201	6	2015
Week	of Run	Ageable	1.1	0.3	1.2	1.3
17	6.4%	NA	NA	NA	NA	NA
18	17.9%	NA	NA	NA	NA	NA
19	27.8%	NA	NA	NA	NA	NA
20	17.6%	NA	NA	NA	NA	NA
21	12.4%	31	35.5%	0.0%	64.5%	0.0%
22	18.0%	138	7.2%	1.4%	85.5%	5.8%
Composit	е	169	NA	NA	NA	NA

Table 12. Weekly and total age composition of summer Chinook Salmon at Bonneville Dam as estimated from scale patterns in 2020. Composite age composition estimates are

weighted by the percentage of the run passing Bonneville Dam in each week.

	ou by the			Brood Year and Age Class									
	Percent	Number	2018	20	17		2016			2015			
Week	of Run	Ageable	0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2		
23	10.1%	210	0.0%	0.5%	9.5%	6.2%	65.2%	0.0%	0.0%	17.6%	1.0%		
24	12.4%	84	0.0%	1.2%	11.9%	7.1%	63.1%	0.0%	0.0%	16.7%	0.0%		
25	16.3%	116	0.0%	0.9%	9.5%	6.0%	61.2%	0.9%	0.9%	17.2%	3.4%		
26	19.5%	107	0.0%	0.9%	9.3%	12.1%	56.1%	0.0%	0.0%	18.7%	2.8%		
27	15.2%	61	0.0%	1.6%	8.2%	4.9%	80.3%	0.0%	0.0%	4.9%	0.0%		
28	9.7%	36	0.0%	5.6%	8.3%	8.3%	69.4%	0.0%	0.0%	8.3%	0.0%		
29	7.7%	92	1.1%	1.1%	20.7%	10.9%	63.0%	0.0%	0.0%	3.3%	0.0%		
30	5.3%	119	0.8%	3.4%	10.1%	4.2%	73.9%	0.0%	0.8%	5.0%	1.7%		
31	3.8%	86	3.5%	17.4%	9.3%	10.5%	44.2%	0.0%	3.5%	11.6%	0.0%		
Compo	site	744	0.3%	2.2%	10.3%	7.9%	64.7%	0.1%	0.3%	12.8%	1.3%		

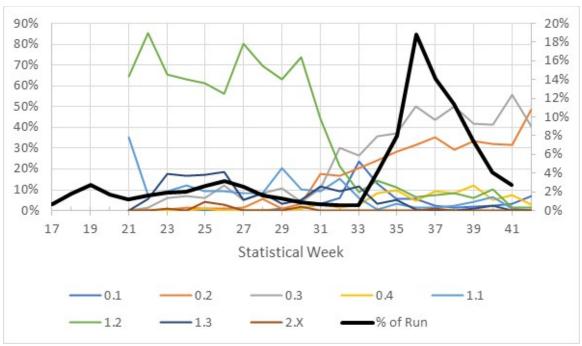


Figure 11. Weekly age composition of Chinook Salmon at Bonneville Dam as estimated from scale patterns in 2020 with weekly percentage of run.

Table 13. Weekly and total age composition of fall Chinook Salmon at Bonneville Dam as estimated from scale patterns in 2020. Composite age composition estimates are weighted by the percentage of the run passing Bonneville Dam in each.

_	Percent				Bro	od Year a	nd Age Cl	ass		
	of	Number	2018	20	17	20	16	20	15	2014
Week	Run	Ageable	0.1	0.2	1.1	0.3	1.2	0.4	1.3	2.3
32	0.9%	66	6.1%	16.7%	15.2%	30.3%	21.2%	1.5%	9.1%	0.0%
33	0.7%	34	23.5%	20.6%	5.9%	26.5%	8.8%	2.9%	11.8%	0.0%
34	5.7%	145	13.1%	24.1%	0.7%	35.9%	14.5%	8.3%	3.4%	0.0%
35	10.8%	162	5.6%	28.4%	3.1%	37.0%	11.1%	9.9%	4.9%	0.0%
36	25.5%	276	5.4%	31.5%	1.4%	50.0%	6.5%	4.7%	0.4%	0.0%
37	19.1%	131	2.3%	35.1%	1.5%	43.5%	7.6%	9.2%	0.0%	0.8%
38	15.4%	245	1.2%	29.4%	2.4%	50.2%	8.6%	8.2%	0.0%	0.0%
39	10.1%	270	1.9%	33.3%	4.1%	41.9%	5.9%	12.2%	0.7%	0.0%
40	5.5%	250	2.4%	32.0%	6.4%	41.2%	10.4%	5.2%	2.4%	0.0%
41	3.6%	246	3.3%	31.7%	0.8%	55.7%	1.2%	7.3%	0.0%	0.0%
42	2.5%	72	6.9%	48.6%	0.0%	40.3%	1.4%	2.8%	0.0%	0.0%
Composite	100.0%	1897	4.6%	30.9%	3.1%	44.2%	8.1%	7.4%	1.7%	0.1%

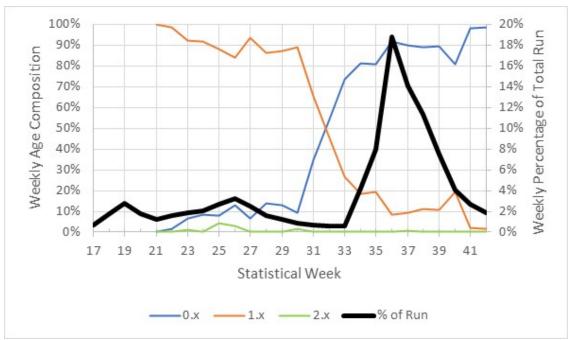


Figure 12. Weekly age composition of Chinook Salmon at Bonneville Dam as estimated from scale patterns in 2020 with weekly percentage of run.

Upstream Age and Length-at-Age Composition

Age 1.2 was the dominant age class for summer Chinook at all dams (Table 14, Figure 13). Among fall Chinook, Age 0.3 was the predominant age class at Bonneville and The Dalles dams and Age 0.2 was predominant at John Day through Rocky Reach dams and Ice Harbor through Lower Granite dams. Age 1.2 was the largest age class at Wells Dam (Table 14, Figure 14). Length-at-age composition estimates at mainstem dam sites are summarized in Tables 15-17.

Table 14. Unweighted age composition estimates of summer and fall Chinook Salmon at mainstem Columbia Basin dams as estimated using upstream PIT tag detections for Chinook sampled at Bonneville Dam and aged using scale pattern analysis in 2020⁴. No spring Chinook estimates are presented due to

the minimal sampling we were allowed to conduct.

the minimal s	<u> </u>		4			d Year and	d Age Cla	ass			
Run and Site	Ageable	2018	20	17		2016			2015		2014
Summer	N	0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2	2.3
Bonneville	903	0.6%	3.0%	10.7%	7.5%	63.6%	0.1%	0.6%	12.7%	1.2%	0.0%
The Dalles	810	0.6%	3.2%	10.5%	7.9%	62.6%	0.1%	0.5%	13.2%	1.4%	0.0%
John Day	753	0.4%	2.5%	10.5%	7.8%	63.3%	0.1%	0.4%	13.4%	1.5%	0.0%
McNary	736	0.4%	2.6%	10.7%	7.9%	62.6%	0.1%	0.4%	13.7%	1.5%	0.0%
Priest Rapids	582	0.2%	2.4%	8.8%	9.1%	61.7%	0.2%	0.3%	15.8%	1.5%	0.0%
Rock Island	573	0.2%	2.4%	8.6%	9.2%	61.8%	0.2%	0.3%	15.7%	1.6%	0.0%
Rocky Reach	518	0.2%	2.7%	7.9%	8.5%	62.4%	0.2%	0.4%	16.2%	1.5%	0.0%
Wells	433	0.2%	3.0%	8.3%	9.2%	63.5%	0.2%	0.5%	13.4%	1.6%	0.0%
Ice Harbor	139	1.4%	3.6%	20.9%	2.9%	63.3%	0.0%	0.0%	6.5%	1.4%	0.0%
Low. Mon.	135	1.5%	3.7%	20.7%	3.0%	63.7%	0.0%	0.0%	5.9%	1.5%	0.0%
Little Goose	132	1.5%	3.8%	21.2%	3.0%	62.9%	0.0%	0.0%	6.1%	1.5%	0.0%
Lower Granite	131	1.5%	3.8%	21.4%	3.1%	62.6%	0.0%	0.0%	6.1%	1.5%	0.0%
Fall	N	0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2	2.3
Bonneville	1861	4.5%	31.2%	3.2%	44.1%	7.9%	0.0%	7.4%	1.7%	0.0%	0.1%
The Dalles	1311	4.7%	35.0%	3.9%	38.7%	8.6%	0.0%	7.4%	1.8%	0.0%	0.0%
John Day	1112	4.3%	37.9%	3.9%	36.5%	8.4%	0.0%	7.6%	1.5%	0.0%	0.0%
McNary	1039	4.3%	38.7%	4.1%	35.9%	8.4%	0.0%	6.9%	1.6%	0.0%	0.0%
Priest Rapids	210	3.8%	41.0%	7.6%	27.6%	13.3%	0.0%	4.3%	2.4%	0.0%	0.0%
Rock Island	72	6.9%	29.2%	12.5%	23.6%	19.4%	0.0%	1.4%	6.9%	0.0%	0.0%
Rocky Reach	60	6.7%	26.7%	13.3%	23.3%	20.0%	0.0%	1.7%	8.3%	0.0%	0.0%
Wells	38	5.3%	15.8%	18.4%	23.7%	26.3%	0.0%	0.0%	10.5%	0.0%	0.0%
Ice Harbor	171	11.7%	48.0%	2.9%	25.1%	8.8%	0.0%	1.8%	1.8%	0.0%	0.0%
Low. Mon.	167	12.0%	47.9%	3.0%	25.1%	8.4%	0.0%	1.8%	1.8%	0.0%	0.0%
Little Goose	163	11.7%	48.5%	2.5%	25.2%	8.6%	0.0%	1.8%	1.8%	0.0%	0.0%
Lower Granite	161	11.8%	49.1%	1.9%	25.5%	8.1%	0.0%	1.9%	1.9%	0.0%	0.0%

⁴ The Bonneville estimates in this table differ up to 2.2 percentage points from those presented in Tables 12-14 for two reasons. First is that Table 15 does not include fish not detected at Bonneville Dam and second, estimates in this table are unweighted by run size while tables 12-14 are weighted.

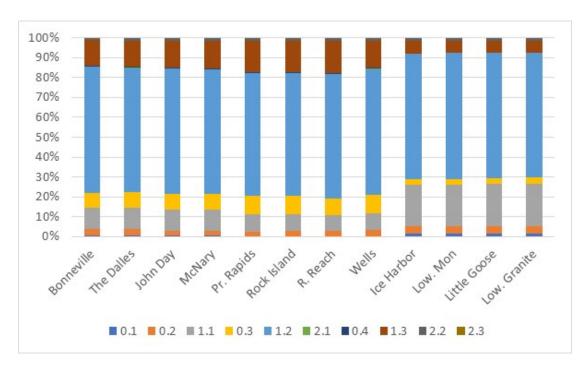


Figure 13. Summer Chinook age composition at Columbia and Snake River dams estimated using PIT tagged Chinook tracked by this project. Summer Chinook are defined as passing Bonneville Dam between June 1 and July 31, 2020.

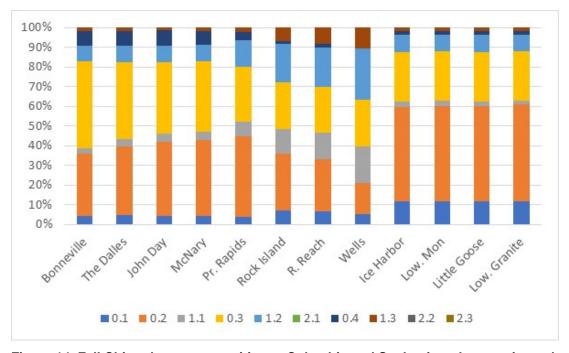


Figure 14. Fall Chinook age composition at Columbia and Snake river dams estimated using PIT tagged Chinook tracked by this project. Fall Chinook are defined as passing Bonneville Dam on or after August 1, 2020.

Table 15. Spring Chinook Salmon length-at-age composition, as estimated by PIT tag detections at upstream dams of fish aged using scale pattern analysis that passed Bonneville Dam on or before May 31 at Columbia and Snake River dams in 2020. (Note that sampling we were not allowed to sample until Week 22 and thus missed 69.6% of the spring Chinook run - Table 11)

				Brood	l Year a	nd Age	Class		
	Statistic	2018	20	17		2016		20	15
Dam		0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3
	μ			50.6	87.8	69.9			85.4
Bonneville	S			6.0	4.6	7.4			5.6
	n			21	2	138			8
	μ			50.6	87.8	69.7			85.4
The Dalles	S			6.0	4.6	8.4			5.6
	n			21	2	100			8
	μ			50.6	87.8	69.8			85.4
John Day	S			60	4.6	8.6			5.6
	n			21	2	94			8
	μ			49.9	87.8	69.9			85.4
McNary	S			6.0	4.6	8.7			5.6
	n			18	2	89			8
Priest	μ			49.8	87.8	68.8			86.8
Rapids	S			3.2	4.6	19.1			5.6
ιταρίασ	n			4	2	16			6
	μ			49.8	87.8	68.8			86.8
Rock Island	S			3.2	4.6	19.1			5.6
	n			4	2	16			6
	μ			51.3	87.8	73.3			85
Rocky Reach	S			3.9	4.6	7.4			3.7
Reach	n			2	2	6			5
	μ			51.3	87.8	71.4			86
Wells	s			3.9	4.6	6.3			4.6
	n			2	2	5			3
	μ			49.5		70.3			81.3
Ice Harbor	s			5.2		4.1			3.9
	n			11		63			2
	μ			49.5		70.4			81.3
Lower Monumental	S			5.2		4.1			3.9
Monumentai	n			11		62			2
	μ			49.5		70.4			81.3
Little Goose	S			5.2		4.1			3.9
	n			11		61			2
Lower	μ			49.5		70.3			81.3
Lower Granite	S			5.2		4.1			3.9
Sidillo	n			11		60			2

45

Table 16. Summer Chinook Salmon length-at-age composition, as estimated by PIT tag detections at upstream dams of fish aged using scale pattern analysis that passed Bonneville Dam between June 1-July 31 at Columbia and Snake River dams in 2020.

Bonneville Da	AITI DOLVIGO	Jane	, July				Age Cla		auiiio I	2020.
		2018	20			2016			2015	
Dam	Statistic	0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2
	μ	42.5	62.7	52.5	80.3	72.8	65.0	85.5	81.1	77.0
Bonneville	S	2	8.9	5.6	5.9	31		10.5	7.5	12.9
	n	5	27	97	68	574	1	5	115	11
	μ	42.5	62.7	52.5	80.1	73	65.0	84.6	81.1	77.0
The Dalles	S	2	8.9	5.8	6	32.9		12	7.8	12.9
	n	5	26	85	64	507	1	4	107	11
	μ	43.2	61.4	52.1	80.0	72.9	65.0	86.5	81.1	77.0
John Day	S	2	6.4	5.5	6	33.9		13.9	7.9	12.9
	n	3	19	79	59	477	1	3	101	11
	μ	43.2	61.4	52.1	80.0	73	65.0	86.5	81.1	77.0
McNary	S	2	6.4	5.5	6.1	34.5		13.9	7.9	12.9
	n	3	19	79	58	461	1	3	101	11
Priest	μ	41.0	59.8	52.5	79.6	73.3	65.0	79.0	81.4	75.1
Rapids	S		5	6.1	6.0	39		7.1	7.8	13.6
Таріао	N	1	14	51	53	359	1	2	92	9
	μ	41.0	59.8	52.6	79.6	73.4	65.0	79.0	81.4	75.1
Rock Island	S		5	6.1	6.0	39.2		7.1	7.9	13.6
	N	1	14	49	53	354	1	2	90	9
Daalaa	μ	41.0	59.8	53.3	79.5	73.4	65.0	79	81.3	75.3
Rocky Reach	s		5	6	6.3	41	-	7.1	8	14.5
reach	n	1	14	41	44	323	1	2	84	8
	μ	41.0	60.6	53.9	80	73.9	65.0	79.0	79.9	74.9
Wells	S		4	6	6.5	44.4		7.1	8.1	15.6
	n	1	13	36	40	275	1	2	58	7
	μ	44.3	66	51.6	81.9	71.9			77.2	85.3
Ice Harbor	S	1.1	8.2	4.3	5.8	4.7			8.6	5.3
	n	2	5	29	4	88			9	2
Lower	μ	44.3	66	51.6	81.9	71.9			75.5	85.3
Monumental	S	1.1	8.2	4.3	5.8	4.7			7.5	5.3
	n	2	5	28	4	86			8	2
	μ	44.3	66	51.6	81.9	72			75.5	85.3
Little Goose	S	1.1	8.2	4.3	5.8	4.7			7.5	5.3
	n	2	5	28	4	83			8	2
Lower	μ	44.3	66	51.6	81.9	72			75.5	85.3
Granite	S	1.1	8.2	4.3	5.8	4.7			7.5	5.3
· · · · · · · · · · · · · · · · ·	n	2	5	28	4	82			8	2

Table 17. Fall Chinook Salmon length-at-age composition, as estimated by PIT tag detections at upstream dams of fish aged using scale pattern analysis that passed Bonneville after July 31 for fall Chinook Salmon at Columbia and Snake River dams in 2020.

2020.		Brood Year and Age Class									
Dam	Statistic	2018	20	17		2016			2015		2014
		0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2	2.3
	μ	49.6	64.8	58.8	76.6	74.1		83.7	80.6		79.0
Bonneville	S	5.9	5.7	5.9	5.4	6.7		5.7	7.8		
	n	84	581	59	820	147		138	31		1
	μ	47.2	63.8	58.8	76.5	73.6		83.6	80.3		
The Dalles	S	4.5	4.8	5.8	5.6	7		5.7	8.1		
	n	61	459	51	507	113		97	23		
	μ	47.6	64	59.3	76.5	73.8		83.6	79.3		
John Day	S	4.4	4.5	5.9	5.5	7.1		6	8.6		
	n	48	421	43	406	93		84	17		
	μ	47.4	64	59.3	76.2	73.7		83.4	79.3		
McNary	S	4.4	4.5	5.9	5.5	6.9		5.8	8.6		
	n	45	402	43	373	87		72	17		
Deirot	μ	48.4	64.1	57.9	76.1	73.2		82.9	79.1		
Priest Rapids	S	2.4	4.5	6.7	5.2	7.6		8.7	11.5		
Rapids	n	8	86	16	58	28		9	5		
	μ	48.5	63	54.6	76.3	70.2		75.5	79.1		
Rock Island	S	2.4	4.3	6	5.4	7.5			11.5		
	n	5	21	9	17	14		1	5		
5 .	μ	48.6	62.4	54.9	75.6	69.6		75.5	79.1		
Rocky Reach	S	2.8	4.7	6.3	5.3	7.4			11.5		
Reach	n	4	16	8	14	12		1	5		
	μ	47	64	55.1	77.2	67.8			78.3		
Wells	S	3.5	4.8	6.8	5	6.5			13		
	n	2	6	7	9	10			4		
	μ	47.9	63.2	58.4	77.3	72.2		80.2	74.3		
Ice Harbor	S	3.5	4.9	5.8	8.4	9.5		3.3	9.3		
	n	20	82	5	43	15		3	3		
	μ	47.9	63.3	58.4	77.5	72.9		80.2	74.3		
Lower Monumental	S	3.5	4.9	5.8	8.5	9.5		3.3	9.3		
Monumental	n	20	80	5	42	14		3	3		
	μ	47.9	63.2	60	77.8	72.9		80.2	74.3		
Little Goose	S	3.6	4.9	5.2	8.3	9.5		3.3	9.3		
	n	19	79	4	41	14		3	3		
Lawar	μ	47.9	63.2	59.5	77.8	72.1		80.2	74.3		
Lower Granite	S	3.6	4.9	6.3	8.3	9.4		3.3	9.3		
Claime	n	19	79	3	41	13		3	3		

Fallback

Estimated fallback rates, based on Chinook Salmon reascending fish ladders or being detected downstream after ascending a fish ladder, ranged from 0.0% spring Chinook at Priest Rapids and Rock Island dams to 38.7% for fall Chinook at Priest Rapids Dam (Table 18). These rates likely underestimate the

true fallback rates as they do not include any fish that ascended a dam, fell back, and then were not subsequently detected. Of the 87 fall Chinook fallbacks estimated at Priest Rapids Dam, 55 were subsequently detected at Priest Rapids Hatchery located 4 km downstream. An additional 10 fallbacks were subsequently detected at Ringold Hatchery located 68 km downstream.

Table 18. Estimated minimum Chinook Salmon fallback rates by race at Columbia Basin

dams with PIT tag detection in 2020 as estimated by PIT tags⁵.

Dam	Spring Chinook	Summer Chinook	Fall Chinook
Bonneville	3.1%	1.1%	1.4%
The Dalles	8.0%	3.4%	2.0%
John Day	1.4%	1.8%	1.3%
McNary	3.0%	1.0%	1.3%
Priest Rapids	0.0%	2.4%	38.7%
Rock Island	0.0%	1.2%	11.5%
Rocky Reach	11.1%	8.8%	4.7%
Wells	28.6%	16.9%	2.4%
Ice Harbor	9.6%	7.1%	1.7%
L. Monumental	4.9%	6.0%	1.1%
Little Goose	1.3%	2.0%	1.8%
Lower Granite	2.5%	3.4%	6.0%
Tumwater	10.0%	2.6%	NA
Weighted Mean	4.3%	3.8%	3.0%

A total of 382 Chinook generated 534 fallback events at mainstem dams with adult PIT tag detection (Table 19). A total of 102 Chinook had more than one fallback event at a single dam or several dams with four Chinook falling back 5 times each and one Chinook with 6 fallbacks. Figures showing the movement of some of these Chinook are in the Appendix C (Table C1 and Figures C26 and C27).

⁵ Fallback rates do not include Chinook Salmon which may have fallen back over a dam and were not subsequently detected.

Table 19. Frequency of fallback events for spring, summer, and fall Chinook Salmon

tagged by this project in 2020.

Fallback Events per Chinook	Total Number of Chinook
1	280
2	68
3	23
4	6
5	4
6	1
Number of Chinook falling back at least once	382
Percentage of Chinook with at least one fallback event	11.7%
Total fallback events	534
Number of Chinook (excluding minijacks and Tules) in study	3241
Fallback events per Chinook	0.16

Night Passage

Night passage (2000-0400 Pacific Standard Time) of tagged Chinook Salmon was under 10% at all mainstem dams except for fall Chinook at Rock Island Dam (Table 20). Higher percentages of night passage were estimated at tributary dams, but sample sizes are relatively small (for example, 5 of only 11 summer Chinook and 2 of 6 fall Chinook passed Prosser Dam at night, Table 20).

Table 20. Chinook Salmon night passage (2000-0400) in 2020 at Columbia Basin dams as

estimated by PIT tag detections.

Site	Spring Chinook	Summer Chinook	Fall Chinook
Bonneville	0.5%	0.5%	0.4%
The Dalles	4.0%	3.2%	1.7%
John Day	1.4%	0.8%	0.9%
McNary	2.3%	0.8%	1.1%
Priest Rapids	0.0%	1.4%	3.6%
Rock Island	0.0%	3.0%	11.5%
Rocky Reach	0.0%	2.6%	1.6%
Wells	0.0%	2.7%	2.4%
Ice Harbor	2.4%	2.0%	3.4%
Lower Monumental	0.0%	2.7%	0.6%
Little Goose	1.3%	0.7%	3.0%
Lower Granite	5.1%	2.7%	1.8%
Prosser	16.7%	45.5%	33.3%
Roza	25.0%	14.3%	NA
Tumwater	0.0%	13.2%	NA

Straying

Estimated Chinook stray rates by stock using PBT for those stocks with more than 10 fish that were designated as either putative strays or on-target, ranged from 29.6% for Spring Creek hatchery stocks to 0% for Pahsimmeroi Hatchery (Table 21). The hatcheries with the greatest number of strays were Little White Salmon and Priest Rapids Hatchery (14 each, and all are fall Chinook). Little White Salmon Hatchery strays were all last detected at or upstream of Day Dam while Priest Rapids Hatchery strays were all detected at or upstream of Rock Island Dam. The combined stray rate estimated using PBT for all stocks was 3.7% with 3.8% categorized as putative overshoots.

Estimated Chinook stray rates by stock using GSI for those stocks with more than 10 fish that were designated as either putative strays or on-target, ranged from 87.5% for the Hells Canyon group (with strays last detected in the Salmon, Imnaha, Grande Ronde, Yakima, Wenatchee, and Methow rivers) to 13.3% for the Deschutes fall Chinook group (Table 22). The combined stray rate estimated using GSI was 20.3%

Table 21. Table showing final-PIT-fate categories by hatchery in 2020 using Parental Based Tagging (PBT). Fate categories are categorized by color. Grey is neutral (meaning last detected on route to expected destinations), green is on target (meaning last detected at their expected destination), yellow is putative overshoot meaning a fish last detected in an area adjacent to its expected destination, and red is putative stray meaning a fish was last detected in tributaries or the mainstem outside their normal route to their expected destination. Stray rates are also tabulated.

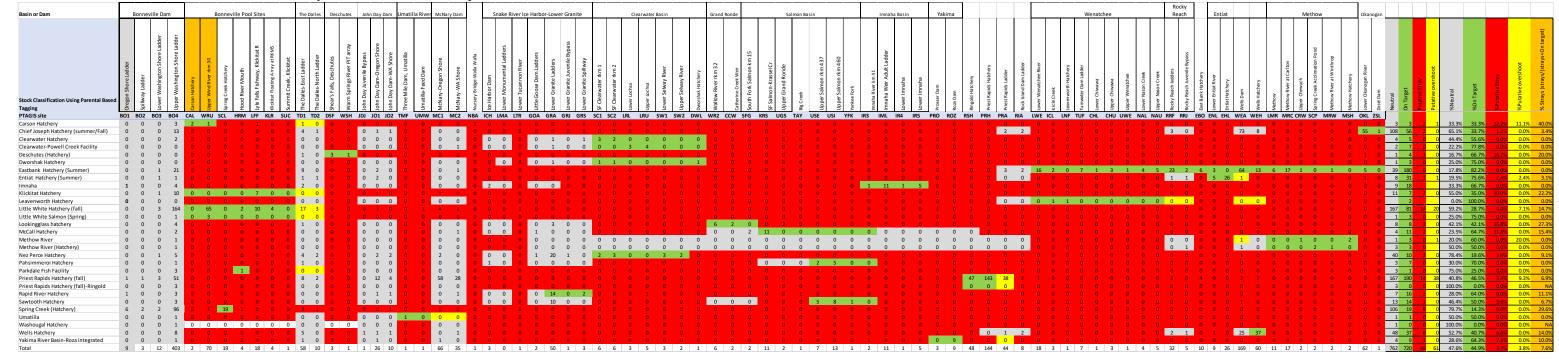
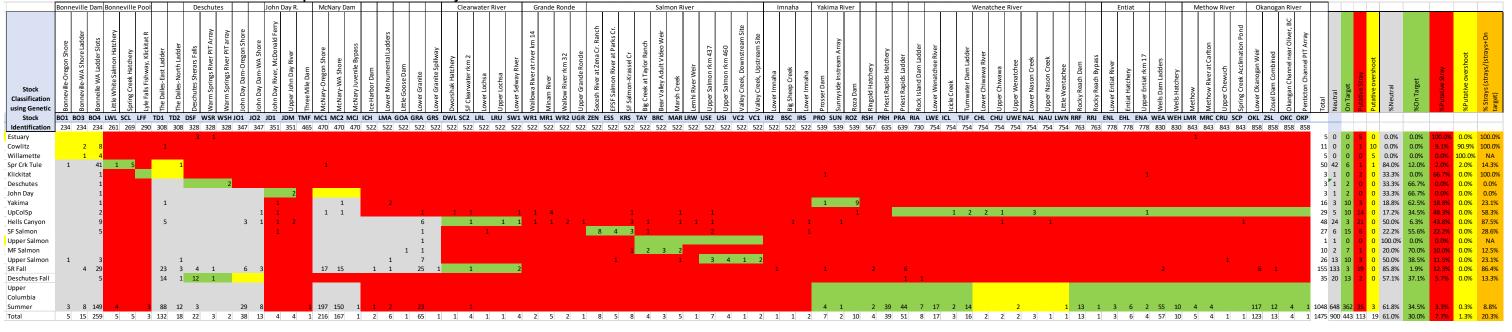



Table 22. Table showing final-PIT-fate categories by hatchery in 2020 using Genetic Stock Identification (GSI). Fate categories are categorized by color. Grey is neutral (meaning last detected on route to expected destinations), green is on target (meaning last detected at their expected destination), yellow is putative overshoot meaning a fish last detected in an area adjacent to its expected destination, and red is putative stray meaning a fish was last detected in tributaries or the mainstem outside their normal route to their expected destination. Stray rates are also tabulated.

RESULTS-STEELHEAD

Sample Size

A total of 1,484 steelhead were sampled at Bonneville Dam in 2020, of which 1,469 were PIT tagged (Table 23). After adding previously tagged fish (15) (which were sampled and therefore identified for the tracking study and included in our sample) and subtracting the number not detected after release (10), the number of steelhead tracked upstream totaled 1,474 (Table 23). Unlike with spring Chinook where 71.1% of the visual count occurred during the time the AFF was closed, only 0.4% of the steelhead visual count occurred during this period.

Table 23. Number of steelhead PIT tagged at Bonneville Dam and tracked past Bonneville

by date and statistical week in 2020.

							Days Sar	npling Restriction	
Dates	Week	Sampled	PIT Tagged	Previously Tagged	Not Detected After Release	Total Tracked	Reduced Sampling- Temp	Reduced Sampling- Shad or Salmon Abundance	No Sampling Due to Temp
No Sampling	16								
No Sampling	17								
No Sampling	18								
No Sampling	19								
No Sampling	20								
5/21-5/22	21	0	0	0	0	0	0	0	0
5/26-29	22	2	2	0	0	2	0	0	0
6/1-6/5	23	2	2	0	0	2	0	5	0
6/8-6/12	24	3	3	0	1	3	0	5	0
6/15-6/19	25	4	4	0	0	4	0	5	0
6/22-6/26	26	7	7	0	0	7	0	5	0
6/29-7/2	27	10	10	0	0	10	0	4	0
7/9-7/10	28	12	12	0	0	12	0	2	0
7/13-7/17	29	68	67	1	0	68	5	0	0
7/20-7/24	30	136	135	1	0	136	5	0	0
7/27-7/30	31	178	176	2	2	178	2	0	0
8/3-8/6	32	181	180	1	1	181	4	0	1
8/10-13	33	149	149	0	2	149	4	0	1
8/17-8/20	34	122	118	4	3	122	4	0	1
8/24-8/27	35	103	101	2	1	103	4	0	1
8/31-9/3	36	62	62	0	0	62	4	0	1
9/9-9/11	37	28	28	0	0	28	0	3	0
9/14,9/16-18	38	74	74	0	0	74	0	4	0
9/21-9/25	39	115	114	1	0	115	0	3	0
9/28-10/2	40	109	107	2	0	109	0	2	0
10/5-10/9	41	70	69	1	0	70	0	0	0
10/13-16	42	49	49	0	0	49	0	0	0
Total		1484	1469	15	10	1474	32	38	5

Distribution of Sample

The distribution of the sample over the run was relatively similar to the run distribution with the primary exception being weeks 36-38 when the run was undersampled (Figure 15). This was likely because in all three weeks we sampled primarily under protocols c) and d) which required leaving pickets up for some or all of the day which likely reduced our sample size. In addition, nearby forest fires resulted in poor air quality which closed the sampling facilities early on some days. in this period. Details on picket lead protocols can be found in Appendix D. A second exception was at the end of the run after all sampling restrictions had ended; the Chinook run had decreased, and we were sampling mostly steelhead, which resulted in percent sampled higher than percent of run.

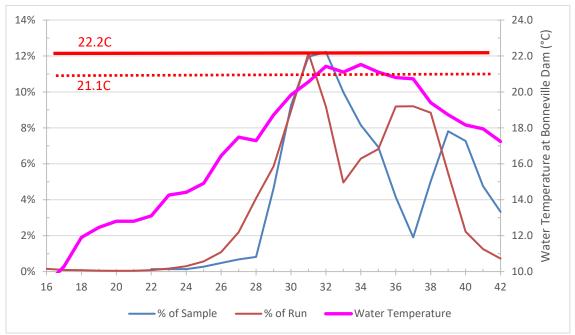


Figure 15. The weekly steelhead sample and run as a percentage of the total sample and run size at Bonneville Dam in 2020. Sampling was reduced at 21.1°C and halted at 22.2°C.

Detection Numbers

The 1,474 steelhead tracked in 2020 through December 31, 2021, generated 101,524 weir detections and 10,943 site detections at 164 sites. Maps and table of sites (Table C1 and Figures C1, C17-C21) found in Appendix C show the categorical ranges of detection numbers at the sites throughout the Columbia Basin.

Bonneville Dam Steelhead Age Composition

The predominant age for 2020 steelhead was 1.2, comprising an estimated 45.0% of the run (Figure 16, Table 24) while Age 2.2 comprised 18.5% and Age r.2 was 24.0%.

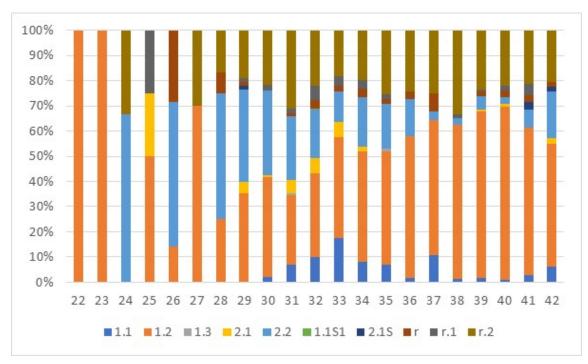


Figure 16. Weekly age composition of steelhead at Bonneville Dam as estimated from scale patterns for age classes in 2020 with weekly abundance.

Table 24. Weekly and total age composition of steelhead at Bonneville Dam as estimated from scale patterns in 2020. Composite age composition estimates are weighted by the percentage of the run passing Bonneville Dam in each week. (r = unreadable)

-g	1		Brood Year and Age Class								
			2017	201			15	Freshwater	Zone Un	ageable	Repeat
Week	Weight	N	1.1	1.2	2.1	1.3	2.2	r	r.1	r.2	Spawners
22	0.1%	2	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
23	0.2%	2	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
24	0.3%	3	0.0%	0.0%	0.0%	0.0%	66.7%	0.0%	0.0%	33.3%	0.0%
25	0.6%	4	0.0%	50.0%	25.0%	0.0%	0.0%	0.0%	25.0%	0.0%	0.0%
26	1.1%	7	0.0%	14.3%	0.0%	0.0%	57.1%	28.6%	0.0%	0.0%	0.0%
27	2.2%	10	0.0%	70.0%	0.0%	0.0%	0.0%	0.0%	0.0%	30.0%	0.0%
28	4.1%	12	0.0%	25.0%	0.0%	0.0%	50.0%	8.3%	0.0%	16.7%	0.0%
29	5.9%	68	0.0%	35.3%	4.4%	0.0%	36.8%	1.5%	1.5%	19.1%	1.5%
30	9.0%	134	2.2%	39.6%	0.7%	0.0%	33.6%	0.0%	2.2%	21.6%	0.0%
31	12.2%	173	6.9%	27.7%	5.2%	0.6%	25.4%	1.2%	1.7%	31.2%	0.0%
32	9.2%	181	9.9%	33.1%	6.1%	0.0%	19.3%	3.3%	5.5%	22.1%	0.6%
33	5.0%	149	17.4%	40.3%	6.0%	0.0%	12.1%	2.0%	4.0%	18.1%	0.0%
34	6.3%	121	8.3%	43.8%	1.7%	0.0%	19.8%	3.3%	3.3%	19.8%	0.0%
35	6.8%	102	6.9%	45.1%	0.0%	1.0%	17.6%	2.0%	2.0%	25.5%	0.0%
36	9.2%	62	1.6%	56.5%	0.0%	0.0%	14.5%	3.2%	0.0%	24.2%	0.0%
37	9.2%	28	10.7%	53.6%	0.0%	0.0%	3.6%	7.1%	0.0%	25.0%	0.0%
38	8.9%	72	1.4%	61.1%	0.0%	0.0%	2.8%	0.0%	1.4%	33.3%	0.0%
39	5.5%	115	1.7%	66.1%	0.9%	0.0%	5.2%	1.7%	0.9%	23.5%	0.0%
40	2.2%	109	0.9%	68.8%	0.9%	0.0%	2.8%	2.8%	1.8%	22.0%	0.0%
41	1.3%	70	2.9%	58.6%	0.0%	0.0%	7.1%	2.9%	4.3%	21.4%	2.9%
42	0.7%	49	6.1%	49.0%	2.0%	0.0%	18.4%	2.0%	0.0%	20.4%	2.0%
Total	38.2%	1473	5.3%	45.0%	2.2%	0.1%	18.5%	2.8%	2.0%	24.0%	0.4%

Estimated unweighted age composition was similar at all mainstem dams with little difference in age composition for those steelhead bound for the Snake River (above Ice Harbor) and above Priest Rapids Dam (Table 25 and Figure 17). Upstream length-at-age estimates are in Table 26.

Table 25. Unweighted age composition of steelhead at mainstem dams in 2020 for principal age groups (excluding those steelhead with freshwater zones where age could not be determined).

THO DC GCCCTTT	N						Repeat
Dam	ageable	1.1	1.2	2.1	1.3	2.2	Spawners
Bonneville	1056	8.4%	63.2%	3.7%	0.2%	24.1%	0.5%
The Dalles	911	9.0%	62.5%	3.6%	0.0%	24.4%	0.5%
John Day	751	8.9%	61.1%	3.6%	0.0%	25.8%	0.5%
McNary	729	9.1%	62.3%	3.3%	0.0%	24.8%	0.5%
Priest Rapids	654	9.6%	65.6%	2.4%	0.0%	22.0%	0.3%
Rock Island	648	9.6%	65.7%	2.5%	0.0%	21.9%	0.3%
Rocky Reach	643	9.6%	66.1%	2.3%	0.0%	21.6%	0.3%
Wells	634	9.5%	66.7%	2.4%	0.0%	21.1%	0.3%
Ice Harbor	578	9.2%	66.8%	2.4%	0.0%	21.3%	0.3%
Lower Monumental	565	8.8%	66.5%	2.5%	0.0%	21.8%	0.4%
Little Goose	548	8.8%	67.0%	2.6%	0.0%	21.5%	0.2%
Lower Granite	530	8.7%	67.2%	2.5%	0.0%	21.5%	0.2%

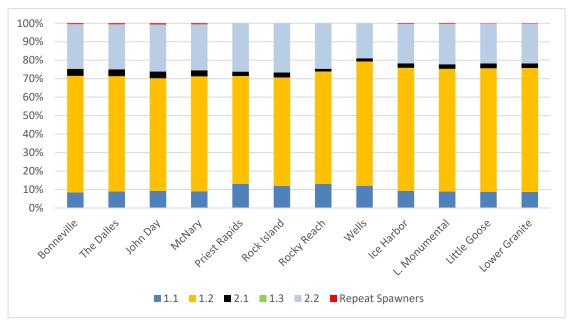


Figure 17. Unweighted age composition of steelhead at mainstem dams in 2020 for principal age groups (excluding those steelhead with freshwater zones where age could not be determined).

Table 26. Steelhead length-at-age composition at mainstem Columbia Basin dams, as estimated by upstream PIT tag detections of steelhead sampled at Bonneville Dam in 2020. (r = unreadable, S=spawning check mark in the scale)

r = unreadabi	,	J				Age (Class				
Dam	Statistic	1.1	1.2	2.1	1.3	2.2	r	r.1	r.2	1.151	2.15
	μ	55.8	75.3	56.5	83.0	71.0	70.1	55.8	74.4	64.5	67.6
Bonneville	S	4.3	8.5	4.5	10.6	6.0	12.4	3.9	8.9		3.4
	n	89	664	39	2	254	33	36	336	1	4
	μ	55.8	75.4	56.8		70.7	69.3	55.5	74.1	64.5	67.6
The Dalles	S	4.4	8.5	4.6		5.9	13.2	3.7	8.9		3.4
	n	82	567	33		222	23	31	282	1	4
	μ	55.9	76.0	56.9		71.0	68.8	55.4	74.4	64.5	68.3
John Day	S	4.2	8.4	4.9		5.9	13.2	3.7	7.7		3.8
	n	67	457	27		194	21	29	242	1	3
	μ	56.0	76.0	56.9		71.3	68.8	55.4	74.4	64.5	68.3
McNary	S	4.2	8.4	4.9		6.0	13.2	3.8	7.7		3.8
	n	66	452	24		181	21	28	239	1	3
Priest	μ	55.1	70.6	54.0		71.6	77.5	56.0	69.2		
Rapids	s	3.1	4.5	0.7		4.5		4.2	5.5		
Таріаз	n	11	49	2		22	1	5	18		
	μ	55.3	71.2	54.0		72.1	77.5	55.8	69.4		
Rock Island	s	2.8	4.0	0.7		4.5		4.8	5.4		
	n	9	44	2		20	1	4	16		
Б	μ	55.3	71.3	54.5		71.4	77.5	55.8	69.4		
Rocky Reach	S	2.8	4.1	-		4.2		4.8	5.4		
Reacii	n	9	42	1		17	1	4	16		
	μ	54.6	71.4	54.5		70.1	77.5	56.7	69.0		
Wells	s	2.8	4.0			4.0		5.5	5.7		
	n	7	39	1		11	1	3	14		
	μ	56.2	76.8	58.2		71.9	72.0	55.5	75.6		67.0
Ice Harbor	S	4.2	8.6	5.7		6.2	12.4	3.8	7.8		4.2
	n	53	384	14		123	16	20	192		2
Lower	μ	56.2	76.8	58.2		71.9	72.0	55.4	75.8		67.0
Lower Monumental	S	4.0	8.6	5.7		6.2	12.4	3.8	7.8		4.2
Monumentai	n	50	374	14		123	16	19	182		2
	μ	56.0	77.0	58.2		72.1	72.0	55.4	75.7		64.0
Little Goose	S	4.0	8.7	5.7		6.2	12.4	3.8	7.8		
	n	48	365	14		118	16	19	177		1
Lover	μ	56.2	77.1	57.6		72.3	73.2	55.1	75.6		64.0
Lower Granite	S	4.0	8.7	5.5		6.1	11.9	3.3	7.7		
Granite	n	46	354	13		114	15	16	173		1

Mainstem Dam Recoveries, Mortality, and Escapement Estimates

Data on tag detections through December 31, 2021, was downloaded from www.ptagis.org. An estimated 55.2% of the run was last detected at or above Ice Harbor Dam compared to 6.9% at or above Priest Rapids Dam in 2020 (Figure 18).

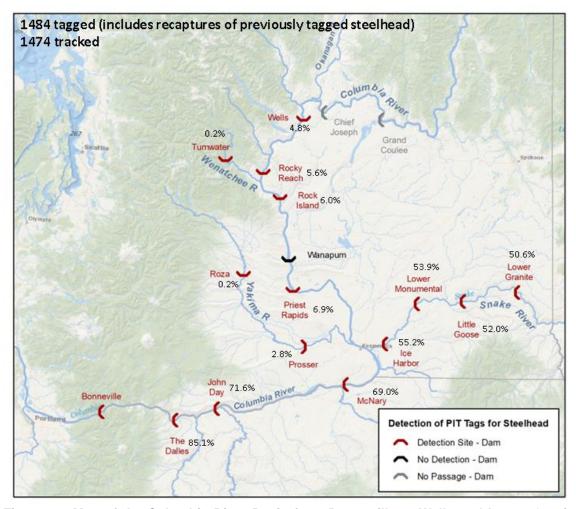


Figure 18. Map of the Columbia River Basin from Bonneville to Wells and Lower Granite dams showing the number of steelhead PIT tagged at Bonneville Dam, and the percentage estimated to pass upstream dams in 2020.

Steelhead last detected in the Snake River dominated the run after weeks 22-27 when sample sizes were small. (Table 27, Figures 19-20).

Table 27. Most upstream detection by Statistical Week and region for steelhead tracked by this study in 2020.

Statistical Week	% of Run	Sample Size	At main- stem dams between Bonneville- and McNary	Tributaries between Bonneville and McNary Dams	Between McNary and Priest Rapids dams	Above Priest Rapids Dam	Above Ice Harbor (Snake River)
22	0.1%	2	50.0%	0.0%	0.0%	0.0%	50.0%
23	0.2%	2	100.0%	0.0%	0.0%	0.0%	0.0%
24	0.3%	3	100.0%	0.0%	0.0%	0.0%	0.0%
25	0.6%	4	75.0%	25.0%	0.0%	0.0%	0.0%
26	1.1%	7	28.6%	0.0%	28.6%	0.0%	42.9%
27	2.2%	10	50.0%	10.0%	10.0%	20.0%	10.0%
28	4.1%	12	33.3%	16.7%	8.3%	0.0%	41.7%
29	5.9%	68	11.8%	14.7%	13.2%	10.3%	50.0%
30	9.0%	136	27.9%	11.0%	9.6%	11.8%	39.7%
31	12.2%	178	26.0%	16.4%	12.4%	6.8%	38.4%
32	9.2%	181	23.9%	7.8%	11.7%	12.8%	43.9%
33	5.0%	149	25.7%	7.4%	8.1%	12.8%	45.9%
34	6.3%	122	30.0%	2.5%	10.0%	8.3%	49.2%
35	6.8%	103	26.5%	2.9%	4.9%	4.9%	60.8%
36	9.2%	62	19.4%	3.2%	1.6%	6.5%	69.4%
37	9.2%	28	17.9%	0.0%	3.6%	0.0%	78.6%
38	8.9%	74	24.3%	0.0%	2.7%	1.4%	71.6%
39	5.5%	115	25.2%	0.0%	1.7%	0.0%	73.0%
40	2.2%	109	19.3%	4.6%	0.0%	0.0%	76.1%
41	1.3%	70	10.0%	0.0%	4.3%	2.9%	82.9%
42	0.7%	49	24.5%	16.3%	8.2%	0.0%	51.0%
Weeks 17- 42	38.2%	1,474	25.0%	6.9%	7.4%	6.4%	54.4%

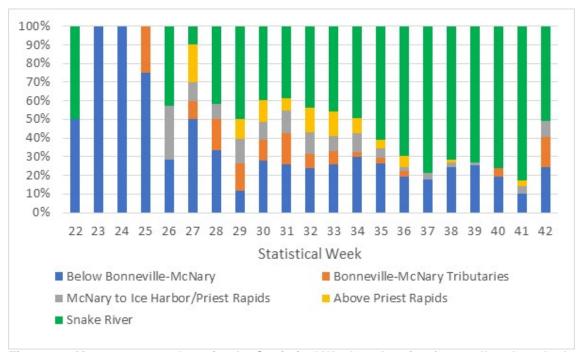


Figure 19. Most upstream detection by Statistical Week and region for steelhead tracked by this study in 2020 as a percentage of the weekly run.

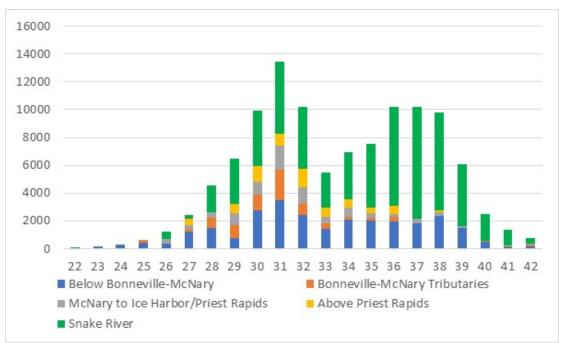


Figure 20. Most upstream detection by Statistical Week and region for steelhead tracked by this study in 2020 as estimated by numbers of fish passing Bonneville Dam by week.

The percentage of PIT tagged steelhead passing a dam without detection was 1% or under (Table 28) at most dams except for The Dalles and John Day dams at 2.1% and 1.2%, respectively.

Table 28. Percentages of steelhead passing a dam undetected that were subsequently detected upstream in 2020.

Dam	Percent not Detected
Bonneville	0.1%
The Dalles	2.1%
John Day	1.2%
McNary	0.9%
Priest Rapids	0.9%
Rock Island	1.0%
Rocky Reach	0.0%
Wells	0.0%
Ice Harbor	0.1%
Lower Monumental	0.3%
Little Goose	0.5%
Lower Granite	0.0%
Mean (weighted by number passing each dam)	0.7%

Migration Rates and Passage Time

The fastest median migration rate between mainstem dams, as measured in kilometers per day, was between John Day and McNary dams (22.5 km/day), while the slowest was 3.0 km/day between Bonneville and John Day dams (Table 29).

Table 29. Steelhead migration rate between Columbia Basin dams as estimated by PIT tag detections in 2020.

Dam Pair	Distance (km)	Median Migration Rate (km/day)
Bonneville-The Dalles	74	5.0
The Dalles-John Day	39	3.0
John Day-McNary	123	22.5
Bonneville-John Day	113	4.1
Bonneville - McNary	231	7.4
McNary - Priest Rapids	167	15.8
Priest Rapids - Rock Island	89	10.3
Rock Island - Rocky Reach	33	13.1
Rocky Reach - Wells	65	8.6
Rock Island - Tumwater	68	2.4
Bonneville – Rock Island	487	15.2
Bonneville - Wells	585	14.9
McNary - Ice Harbor	67	8.3
Ice Harbor - Lower Granite	156	11.3
Bonneville-Lower Granite	461	9.5

Lower Granite, Wells, McNary, and Rock Island dams had the greatest median passage time from first to last PIT tag detection among mainstem Columbia Basin dams (Table 30). Passage times at Wells, Lower Granite, Priest Rapids, and Bonneville dams may be inflated because of fish trapping programs delaying fish passage. At many of the dams, passage times are very short, which reflects the very short distance between lower-most and upper-most PIT tag antennas.

Table 30. Steelhead median passage times from time of first detection at a dam to time of last detection and the percentage of steelhead taking more than 12 hours between first detection and last detection in 2020.

action and not dotton in 2020								
Dam	Median Passage Time (minutes)	Percentage with more than 12 hours between first detection and last detection at a dam						
Bonneville	6.2	2.6%						
The Dalles	0.1	3.4%						
John Day	1.3	2.4%						
McNary	79.7	4.6%						
Priest Rapids	4.8	3.7%						
Rock Island	52.2	6.2%						
Rocky Reach	8.5	2.2%						
Wells	84.1	2.6%						
Ice Harbor	3.4	4.2%						
Lower Monumental	1.2	7.5%						
Little Goose	0.0	3.3%						
Lower Granite	156.4	15.4%						

Fallback

Estimated minimum fallback rates based on steelhead either reascending fish ladders or steelhead subsequently detected downstream for mainstem Columbia Basin dams ranged from 2.0% at Bonneville Dam to 23.4% at Wells Dam in 2020 (Table 31). These rates likely underestimate the true fallback rates as they do not include any fish that ascended a dam, fell back, and then were not subsequently detected. Steelhead migrating downstream through a fish ladder were not considered fallbacks. Steelhead were detected falling back up to seven times over dams (Table 32). Figures showing examples of the movements of the steelhead with between five and seven fallbacks are in Appendix C (Figures C28 and C29).

Table 31. Estimated minimum steelhead fallback at mainstem Columbia Basin dams in 2020 as estimated by PIT tag⁶ detections.

Dam	Number of Fallbacks	Percent Fallback
Bonneville	30	2.0%
The Dalles	71	5.8%
John Day	44	4.0%
McNary	65	6.4%
Priest Rapids	21	19.4%
Rock Island	14	14.4%
Rocky Reach	12	13.3%
Wells	18	23.4%
Ice Harbor	47	5.8%
Lower Monumental	45	5.7%
Little Goose	53	6.9%
Lower Granite	65	8.8%

Table 32. Frequency of fallback events for steelhead tagged by this project in 2020.

Number of Dams Fallen Back Over	Total Number of Steelhead
1	205
2	42
3	23
4	13
5	5
7	1
Number of steelhead falling back at least once	442
Precent of steelhead with at least one fallback event	19.6%
Total fallback events	289
Number of steelhead in study	1471
Fallback events per steelhead	0.30

Night Passage

Night passage (2000-0400 Pacific Standard Time) by tagged steelhead ranged for the mainstem dams from 0.9% at Bonneville and Priest Rapids dams to 11.7% at Wells Dam (Table 33). The Bonneville Dam estimate is likely biased low as sampling generally took place between 0600 and 1400. Given the median Bonneville Dam passage time of 3.1 minutes (Table 30), steelhead we sampled and tagged would be expected to pass during daytime hours.

⁶ Fallback rates do not include steelhead that may have fallen back over a dam and were not subsequently detected.

Table 33. Estimated steelhead night passage (2000-0400 PST) at Columbia Basin dams in 2020.

Site	Percentage Night Passage
Bonneville	0.9%
The Dalles	5.5%
John Day	5.4%
McNary	5.5%
Priest Rapids	0.9%
Rock Island	9.3%
Rocky Reach	2.2%
Wells	11.7%
Ice Harbor	6.2%
Lower Monumental	9.5%
Little Goose	10.0%
Lower Granite	4.2%

B-Run Analyses

A total of 415 B-run steelhead were sampled in 2020 (where B-run is defined as steelhead greater than or equal to 78.0 cm fork length). Among the weeks sampled, the percentage of steelhead sampled and tagged that were classified as B-run peaked in Statistical Week 40 at 78.0% (Figure 21, Table 34). The estimated B-Run escapement at Bonneville Dam (estimated by multiplying the weekly run size, using counting window data, by the percentage B-run in that week estimated by this project) peaked in Week 37 at 7,284 fish while the A-run steelhead peaked in Week 31 at 13,172 fish (Table 34). Among steelhead sampled and detected above McNary Dam and in tributaries between Bonneville and McNary dams (thereby eliminating most of the steelhead that may have been captured in the Zone 6 fishery in the mainstem Columbia between those dams), 96.1% of steelhead with fork lengths 78.0 cm and greater were destined for the Snake Basin, all of which passed Bonneville on or after Week 35 (Figure 22). Among the B-run steelhead sampled at Bonneville Dam where ocean age could be estimated, two-ocean steelhead was comprised of 99.8% of the B-run and 0.2% of three-ocean fish compared to A-run steelhead which were 16.1% one-ocean, 83.8% two-ocean and 0.1% three-ocean (Table 35).

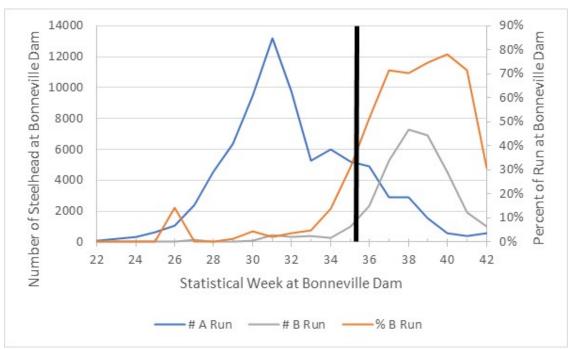


Figure 21. Percentage of B-run steelhead and estimated A- and B-run escapement at Bonneville Dam by statistical week in 2020. The vertical line shows approximately August 25, which is considered the date that separates A- and B-run steelhead.

Table 34. Percentage and number of A- and B-run steelhead estimated at Bonneville Dam

by Statistical Week in 2020.

Week	Percent of Run	Sample Size	B-Run Sample Size	% A Run	% B Run	# A Run	# B Run	% B-Run (of those in terminal areas) in Snake River
22	0.1%	2	0	100.0%	0.0%	91	0	-
23	0.2%	2	0	100.0%	0.0%	184	0	-
24	0.3%	3	0	100.0%	0.0%	333	0	-
25	0.6%	4	0	100.0%	0.0%	625	0	-
26	1.1%	7	1	85.7%	14.3%	1029	172	100.0%
27	2.2%	10	0	100.0%	0.0%	2428	0	ı
28	4.1%	12	0	100.0%	0.0%	4521	0	-
29	5.9%	68	1	98.5%	1.5%	6386	95	100.0%
30	9.0%	136	6	95.6%	4.4%	9472	437	33.3%
31	12.2%	178	4	97.8%	2.2%	13172	303	-
32	9.2%	181	7	96.1%	3.9%	9789	394	66.7%
33	5.0%	149	5	94.6%	5.4%	5201	295	50.0%
34	6.3%	122	17	86.1%	13.9%	5996	971	85.7%
35	6.8%	103	32	68.9%	31.1%	5210	2348	95.0%
36	9.2%	62	32	48.4%	51.6%	4931	5259	100.0%
37	9.2%	28	20	28.6%	71.4%	2914	7284	100.0%
38	8.9%	74	52	29.7%	70.3%	2914	6887	100.0%
39	5.5%	115	86	25.2%	74.8%	1530	4536	100.0%
40	2.2%	109	85	22.0%	78.0%	543	1921	98.5%
41	1.3%	70	50	28.6%	71.4%	396	991	97.8%
42	0.7%	49	15	69.4%	30.6%	554	245	66.7%
	100.0%	1484	415	70.9%	29.1%	78255	32102	96.1% ⁷

Table 35. Ocean age composition of A- (<78 cm fork length) and B-Run (≥78 cm fork length) steelhead sampled at Bonneville Dam in 2020 (weighted by run size).

Run	N	One-Ocean (x.1)	Two-Ocean (x.2)	Three Ocean (x.3)	
A-Run	1033	16.1%	83.8%	0.1%	
B-Run	403	0.0%	99.8%	0.2%	
All Steelhead	1436	11.6%	88.3%	0.1%	

⁷ Weighted by the estimated weekly B-run abundance.

67

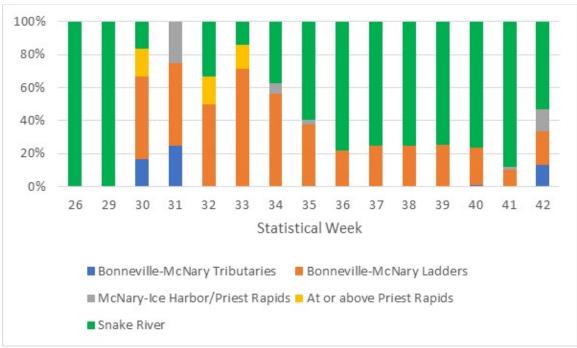


Figure 22. Most upstream detection site for B-run steelhead (≥78 cm fork length) by Statistical Week they were sampled at Bonneville Dam in 2020.

Kelt Analyses

A total of 158 steelhead PIT tagged in 2020 were detected going downstream in the Columbia Basin in late winter, spring, and summer of 2021. presumably attempting to return to the ocean after spawning (kelts), or detected moving back upstream later in 2021, or as part of the Kelt Reconditioning Project (Hatch et. al. multiple years) as spawned-out and moving back downriver or moving back into reaches as reconditioned fish ready to spawn (Tables 36 and C2). At the start of this study in 2009, we assigned a cutoff date of March 31st to define kelts so that any steelhead moving downstream before April 1st were assumed to still be wandering the basin and would eventually spawn. However, in the last few years, as more and more PIT detector systems have been placed in the Columbia Basin, we can now track and observe that several steelhead move out of the system before April 1st after visiting the upper reaches of tributaries (assumed to spawn); usually these fish spawn in the tributaries between Bonneville and McNary dams. Therefore, each year we assess and add several more steelhead that have left the system before the cutoff date to the list of kelts, based on the detailed movements of these fish. In 2020, eight steelhead were moving downriver after spawning before April 1st (Tables 36 and C3) so identified as kelts. The highest percentage of kelt passing Bonneville for weeks where more than 10 steelhead were sampled was in week 28 at 25.0% (n=12, week 25 was also 25.0% but n=4; week 32 was 20.4% with n=181). The greatest number of kelt was estimated to be in Week 32 at 2,082 steelhead (Figures 23 and 24).

Table 36. Some biological and detection information on the steelhead moving in the Columbia Basin system in 2020 that were determined to be kelts (CRITFC Kelt Project) or repeat spawners and potential kelts (because of their behavior). Please see Appendix C for more details on the detected behavior of the steelhead. (last 3 columns not corrected)

PIT Tag				Fork Length	Most Upstream Site		Last Site Detected		Moving	Upstream	
	Date Encountered at AFF	Fin Clip	Age		Basin and Site	Date	Basin and Site	Date	Downstream at Last Detection	in Summer/ Fall 2021	In Kelt Program
3DD.003D365540	7/2/2020		r.2	74.5	Snake (GRA)	7/21/2020	Columbia (BCC)	5/19/2021	X		
3DD.003D3655D2	8/17/2020		2.2	79.0	Snake (GRA)	9/4/2020	Snake (GRS)	5/28/2021	X		
3DD.003D3655D3	8/17/2020		2.2	76.0	Snake (GRA)	10/11/2020	Snake (GRS)	4/29/2021	X		
3DD.003D3655D6	8/12/2020	AD	1.1	51.0	Grande Ronde (WR2)	5/19/2021	Grande Ronde (WR2)	5/19/2021	X		
3DD.003D3655FB	8/12/2020		1.2	66.0	Tucannon (JPT)	4/1/2021	Tucannon (JPT)	3/8/2021	X		
3DD.003D3655FF	8/12/2020		2.1	54.0	Umatilla (UMW)	3/17/2021	Columbia (JDJ)	5/18/2021	Х		
3DD.003D365626	8/12/2020		2.1	49.0	Snake (GRA)	9/30/2020	Snake (GRS)	4/29/2021	X		
3DD.003D365661	8/18/2020		2.2	76.0	Snake (GRA)	9/12/2020	Columbia (BCC)	6/10/2021	Х		
3DD.003D365664	8/19/2020	AD	1.1	58.0	Snake (GRA)	9/29/2020	Snake (GRS)	5/7/2021	X		
3DD.003D365681	8/18/2020		2.2	69.5	Snake (GRA)	10/11/2020	Columbia (BCC)	5/20/2021	Х		
3DD.003D365696	8/20/2020	AD	1.1	54.5	Tucannon (JPT)	5/2/2021	Columbia (MCJ)	5/6/2021	X		
3DD.003D365698	8/20/2020		1.2	70.5	Tucannon (BBT)	3/24/2021	Tucannon (BBT)	3/2/2021	Х		
3DD.003D365699	8/19/2020		1.2	71.5	Grande Ronde (JOC)	4/3/2021	Snake (GRJ)	4/11/2021	Х		
3DD.003D3656AA	8/19/2020		1.2	80.0	Clearwater (LRU)	3/28/2021	Snake (GRS)	5/19/2021	X		
3DD.003D3656AF	8/20/2020		2.2	66.5	Entiat (MAD)	4/14/2021	Columbia (RRJ)	5/2/2021	X		
3DD.003D3656C8	8/19/2020		r	53.5	Columbia (MC2)	9/17/2020	Columbia (BCC)	5/21/2021	Х		
3DD.003D3656D7	8/19/2020	AD	1.2	68.5	Snake (GRA)	10/10/2020	Tucannon (MTR)	3/1/2021	Х		
3DD.003D3656D8	8/24/2020		2.2	69.5	Snake (GRA)	10/24/2020	Tucannon (UTR)	3/24/2021	X		
3DD.003D3656ED	8/20/2020	AD	1.2	73.5	Snake (GRA)	9/29/2020	Snake (GRS)	4/15/2021	X		
3DD.003D3656F0	8/20/2020		1.2	73.0	Yakima (ROZ)	4/6/2021	Yakima (LWC)	4/8/2021	Х		Х

					Most Upstro	eam Site	Last Site	Detected	Moving	Upstream	
PIT Tag	Date Encountered at AFF	Fin Clip	Age	Fork Length	Basin and Site	Date	Basin and Site	Date	Downstream at Last Detection	in Summer/ Fall 2021	In Kelt Program
3DD.003D36571E	8/26/2020	AD	r.2	85.0	Clearwater (SC2)	4/22/2021	Clearwater (SC2)	4/22/2021	Х		
3DD.003D365735	8/27/2020		2.2	77.0	Clearwater (LRU)	3/28/2021	Snake (GRS)	5/24/2021	Х		
3DD.003D365737	8/26/2020	AD	1.2	65.0	Grande Ronde (WR2)	4/23/2021	Grande Ronde (WR2)	4/16/2021	Х		
3DD.003D365757	8/26/2020		2.2	77.0	Clearwater (SEL)	5/21/2021	Salmon (LRL)	5/27/2021	Х		
3DD.003D365763	8/24/2020		2.2	79.0	Salmon (ESS)	4/24/2021	Snake (GRS)	5/23/2021	Х		
3DD.003D365764	8/20/2020	AD	2.2	67.0	Methow (TWR)	4/18/2021	Columbia (BCC)	5/10/2021	Х		
3DD.003D3658CB	8/24/2020		r.2	66.5	Tucannon (JPT)	3/26/2021	Tucannon (JPT)	3/26/2021	Х		
3DD.003D3659B6	8/6/2020		2.2	72.5	Umatilla (UMW)	3/24/2021	Umatilla (UMW)	3/24/2021	Х		
3DD.003D3659BC	8/5/2020		2.2	65.0	Tucannon (JPT)	3/22/2021	Tucannon (JPT)	2/25/2021	Х		
3DD.003D3659C1	8/4/2020		r.2	70.5	Grande Ronde (WR2)	5/24/2021	Grande Ronde (WR1)	5/24/2021	Х		
3DD.003D3659C2	8/6/2020	AD	r.2	71.0	Tucannon (JPT)	3/10/2021	Tucannon (JPT)	3/10/2021	X		
3DD.003D3659D0	8/4/2020		r.2	69.5	Snake (GRA)	3/2/2021	Tucannon (UTR)	3/21/2021	X		
3DD.003D3659DD	8/5/2020		r.2	67.5	Columbia (BO2)	8/6/2020	Columbia (TWX)	4/14/2021	X		
3DD.003D3659E1	8/5/2020		2.2	80.5	Snake (GRA)	10/9/2020	Snake (GRS)	4/17/2021	X		
3DD.003D3659F1	8/4/2020		2.1	52.5	Grande Ronde (JOC)	4/20/2021	Columbia (BCC)	5/11/2021	Х		
3DD.003D3659F6	8/6/2020		2.2	68.0	Yakima (SAT)	4/29/2021	Yakima (SAT)	4/14/2021	X		
3DD.003D3659F8	8/5/2020		r.2	71.5	Snake (GRA)	9/17/2020	Snake (GRS)	5/15/2021	X		
3DD.003D3659FD	8/6/2020	AD	1.2	72.5	Tucannon (MTR)	3/27/2021	Tucannon (MTR)	3/20/2021	Х		
3DD.003D365A02	8/5/2020		2.2	65.5	Snake (GRA)	3/21/2021	Columbia (BCC)	5/15/2021	Х		
3DD.003D365A08	8/6/2020		2.1	61.5	Salmon (YFK)	6/1/2021	Salmon (USI)	6/3/2021	X		
3DD.003D365A09	8/6/2020		2.2	78.0	Snake (GRA)	9/19/2020	Snake (GRS)	5/17/2021	X		"
3DD.003D365A0B	8/6/2020		2.2	65.5	Yakima (PRO)	10/23/2020	Columbia (BCC)	5/29/2021	X		

					Most Upstr	eam Site	Last Site	Detected	Moving	Upstream	
PIT Tag	Date Encountered at AFF	Fin Clip	Age	Fork Length	Basin and Site	Date	Basin and Site	Date	Downstream at Last Detection	in Summer/ Fall 2021	In Kelt Program
3DD.003D365A20	8/11/2020		2.2	74.0	Grande Ronde (WR2)	5/29/2021	Grande Ronde (WR2)	5/1/2021	Х		
3DD.003D365A2F	8/10/2020		2.1	54.5	Snake (GRA)	3/31/2021	Columbia (B2J)	5/31/2021	Х		
3DD.003D365A3A	8/10/2020		2.1	53.5	Wenatchee (MCL)	5/11/2021	Wenatchee (MCL)	3/26/2021	Х		
3DD.003D365A4D	8/12/2020		2.2	67.0	Snake (GRA)	10/6/2020	Snake (GRS)	5/3/2021	Х		
3DD.003D365A65	8/11/2020	AD	1.2	61.5	Snake (GRA)	10/14/2020	Snake (GOJ)	3/31/2021	Х		
3DD.003D365A69	8/11/2020		2.2	66.5	Grande Ronde (JOC)	4/14/2021	Snake (GRS)	4/27/2021	X		
3DD.003D365A6F	8/11/2020	AD	r	77.5	Methow (LMR)	9/24/2020	Columbia (WEJ)	4/19/2021	Х		
3DD.003D365A77	8/11/2020	AD	r.2	65.5	Snake (GRA)	9/25/2020	Columbia (BCC)	5/15/2021	Х		
3DD.003D365A7D	8/3/2020		2.2	68.5	Snake (ACM)	4/6/2021	Snake (GRS)	4/26/2021	X		
3DD.003D365A7F	8/3/2020		1.2	75.5	Columbia (WEA)	8/24/2020	Columbia(BO4)	9/18/2021	X	X	
3DD.003D365A85	8/3/2020		r	50.5	Yakima (SAT)	4/11/2021	Yakima (SAT)	3/6/2021	X		Х
3DD.003D365A8A	7/30/2020	AD	1.2	64.5	Snake (GRA)	10/13/2020	Snake (GRS)	5/7/2021	X		
3DD.003D365AA4	8/3/2020		1.1	63.0	Yakima (SAT)	4/7/2021	Yakima (SAT)	1/16/2021	X		
3DD.003D365AA5	8/3/2020	AD	1.1	52.5	Columbia (WEA)	8/23/2020	Columbia (RRJ)	4/21/2021	X		
3DD.003D365AAE	8/3/2020		r	54.5	Tucannon (TPJ)	5/13/2021	Tucannon (TPJ)	4/22/2021	X		
3DD.003D365AB3	8/4/2020		1.2	72.0	Umatilla (UMW)	3/19/2021	Umatilla (TMF)	03/21/2021	X		
3DD.003D365AC3	7/30/2020	AD	r.2	60.0	Okanogan (NMC)	4/26/2021	Okanogan (NMC)	4/18/2021	X		
3DD.003D365AD3	7/30/2020		2.1	52.5	Grande Ronde (WR1)	5/30/2021	Grande Ronde (WR1)	2/23/2021	X		
3DD.003D365AD6	8/3/2020		2.2	68.0	Clearwater (SWT)	3/19/2021	Columbia (BCC)	4/30/2021	Х		
3DD.003D365AD7	8/4/2020		r	69.5	Salmon (YFK)	4/19/2021	Snake (GRS)	5/21/2021	X		
3DD.003D365ADB	8/4/2020	AD	r.2	76.5	Snake (GRA)	10/2/2020	Snake (GRS)	4/17/2021	X		
3DD.003D365AE4	8/4/2020		2.2	76.5	Snake (GRA)	9/29/2020	Snake (GRS)	4/18/2021	X		

					Most Upstro	eam Site	Last Site	Detected	Moving	Upstream	
PIT Tag	Date Encountered at AFF	Fin Clip	Age	Fork Length	Basin and Site	Date	Basin and Site	Date	Downstream at Last Detection	in Summer/ Fall 2021	In Kelt Program
3DD.003D365AE6	8/4/2020		2.2	74.5	Yakima (SAT)	4/11/2021	Yakima (SAT)	3/17/2021	X		Х
3DD.003D365AEB	8/6/2020		2.2	66.0	Grande Ronde (WR2)	4/30/2021	Grande Ronde (WR2)	4/30/2021	Х		
3DD.003D365B0E	8/5/2020	AD	1.2	68.0	Tucannon (JPT)	3/29/2021	Tucannon (JPT)	3/29/2021	X		
3DD.003D365B3B	8/5/2020		2.2	70.5	Snake (GRA)	10/4/2020	Columbia (BCC)	5/7/2021	X		
3DD.003D365B8D	9/3/2020	AD	1.2	81.0	Salmon (YFK)	4/26/2021	Snake (GRS)	5/9/2021	X		
3DD.003D365BD1	9/3/2020		1.2	76.0	Tucannon (MTR)	4/1/2021	Tucannon (MTR)	3/23/2021	X		
3DD.003D365BD3	9/3/2020		2.2	72.0	Salmon (SFG)	4/8/2021	Columbia (BCC)	5/20/2021	Х		
3DD.003D365BDA	9/3/2020		2.2	71.0	Grande Ronde (JOC)	3/31/2021	Columbia (BCC)	5/4/2021	X		
3DD.003D53A8EB	6/23/2020		2.2	68.0	Snake (GOA)	3/21/2021	Tucannon (JPT)	4/13/2021	X		
3DD.003D53A977	7/20/2020	AD	1.2	66.5	Columbia (WEA)	9/11/2020	Columbia (RRJ)	5/11/2021	X		
3DD.003D53A981	7/21/2020	AD	1.2	71.5	Columbia (WEA)	8/15/2020	Columbia (RRJ)	5/3/2021	X		
3DD.003D53A9B0	7/27/2020		2.2	68.5	Snake (GRA)	10/11/2020	Columbia (BCC)	5/26/2021	Х		
3DD.003D53A9E7	7/28/2020		1.2	58.0	Yakima (SAT)	3/19/2021	Yakima (PRO)	10/29/2021	X	Χ	Χ
3DD.003D53A9EC	7/28/2020		r.2	70.5	Grande Ronde (MR1)	5/1/2021	Snake (GRS)	5/29/2021	X		
3DD.003D53AA4D	7/24/2020		2.2	72.0	Snake (GRA)	9/25/2020	Snake (GRS)	5/17/2021	X		
3DD.003D53AA4F	7/27/2020		2.2	74.0	Clearwater (LAP)	4/29/2021	Clearwater (LAP)	3/20/2021	X		
3DD.003D53AAC7	7/1/2020		r.2	68.5	Okanogan (WHC)	4/21/2021	Columbia (RRJ)	4/25/2021	X		
3DD.003D53AB98	7/10/2020		2.2	62.5	Columbia (JD1)	12/21/2020	Columbia (BCC)	5/5/2021	Х		
3DD.003D53ABDC	7/9/2020		2.2	63.0	Snake (LMA)	7/20/2020	Columbia (BCC)	4/21/2021	X		
3DD.003D53ABFA	7/29/2020	AD	1.2	73.0	Columbia (BO4)	3/18/2021	Columbia (BCC)	3/18/2021	X		

					Most Upstro	eam Site	Last Site	Detected	Moving	Upstream	
PIT Tag	Date Encountered at AFF	Fin Clip	Age	Fork Length	Basin and Site	Date	Basin and Site	Date	Downstream at Last Detection	in Summer/ Fall 2021	In Kelt Program
3DD.003D53AC05	7/28/2020		2.2	67.0	Columbia (MC1)	9/28/2020	Columbia (BCC)	4/28/2021	Х		
3DD.003D53AC0D	7/29/2020		r	57.0	Snake (AFC)	4/13/2021	Snake (AFC)	3/29/2021	Х		
3DD.003D53AC12	7/29/2020	AD	1.2	60.5	Snake (GOA)	10/21/2020	Tucannon (LTR)	3/8/2021	X		
3DD.003D53AC36	7/29/2020		2.2	67.0	Yakima (SAT)	4/26/2021	Yakima (SAT)	3/30/2021	Х		Х
3DD.003D53AC71	6/16/2020		2.1	55.5	Hood (TRA)	5/4/2021	Columbia (BCC)	5/16/2021	Х		
3DD.003D53ADCC	7/15/2020		r.2	73.5	Tucannon (JPT)	4/5/2021	Tucannon (BBT)	4/8/2021	X		
3DD.003D53ADDD	7/15/2020		2.2	72.5	Grande Ronde (WR2)	3/22/2021	Grande Ronde (WR1)	4/15/2021	Х		
3DD.003D53ADEB	7/29/2020		r.2	79.5	Yakima (SAT)	3/10/2021	Columbia (BCC)	4/3/2021	Х		
3DD.003D53ADF2	7/23/2020		r.2	75.5	Methow (BVC)	5/9/2021	Columbia (RRJ)	5/20/2021	X		
3DD.003D53AE0C	7/27/2020		r.2	65.5	Columbia (MC1)	9/24/2020	Umatilla (TMF)	5/13/2021	Х		
3DD.003D53AE0D	7/29/2020	AD	1.1	55.5	Snake (GRA)	10/19/2020	Tucannon (JPT)	3/22/2021	X		
3DD.003D53AE0E	7/28/2020		1.2	69.5	Umatilla (UMW)	4/10/2021	Umatilla (UMW)	4/10/2021	X		
3DD.003D53AE24	7/23/2020	AD	1.2	70.0	Snake (GRA)	10/1/2020	Snake (LMJ)	4/1/2021	X		
3DD.003D53AE3C	7/27/2020		1 scale upside down	72.0	Grande Ronde (JOC)	4/18/2021	Grande Ronde (JOC)	3/20/2021	x		
3DD.003D53AF22	7/10/2020		2.2	67.0	Grande Ronde (JOC)	4/9/2021	Grande Ronde (JOC)	3/4/2021	Х		
3DD.003D53AF54	7/13/2020		2.2	68.0	Salmon (MAR)	5/7/2021	Columbia (BCC)	5/29/2021	Х		
3DD.003D53AF8F	7/21/2020		2.2	77.5	Wenatchee (TUF)	8/16/2020	Columbia (BCC)	4/29/2021	Х		
3DD.003D53AF91	7/21/2020		r.2	70.5	Grande Ronde (MR1)	3/29/2021	Grande Ronde (MR1)	3/20/2021	Х		
3DD.003D53AFA1	7/21/2020		2.2	71.5	Grande Ronde (UGR)	3/5/2021	Snake (GRS)	4/29/2021	Х		
3DD.003D53AFAC	7/21/2020		2.2	69.5	Imnaha (IR3)	4/30/2021	Columbia (BCC)	6/6/2021	Х		

					Most Upstro	eam Site	Last Site	Detected	Moving	Upstream	
PIT Tag	Date Encountered at AFF	Fin Clip	Age	Fork Length	Basin and Site	Date	Basin and Site	Date	Downstream at Last Detection	in Summer/ Fall 2021	In Kelt Program
3DD.003D53AFB7	7/21/2020	AD	1.2	73.0	Methow (LMR)	4/15/2021	Columbia (RRJ)	4/30/2021	X		
3DD.003D53AFCE	7/21/2020		2.2	69.5	Grande Ronde (MR1)	5/31/2021	Columbia (BCC)	6/22/2021	X		
3DD.003D53B114	7/17/2020		2.2	66.5	Yakima (TP2)	4/7/2021	Columbia (BCC)	5/7/2021	X		
3DD.003D53B13B	7/17/2020		2.1	52.5	Yakima (SAT)	4/17/2021	Yakima (SAT)	1/17/2021	X		Х
3DD.003D53B13C	7/17/2020		2.2	70.0	Wenatchee (CRW)	4/12/2021	Columbia (RRJ)	4/22/2021	X		
3DD.003D53B15D	7/16/2020		2.2	65.5	Columbia (JD1)	11/5/2020	Columbia (BCC)	5/13/2021	X		
3DD.003D53B170	7/16/2020		2.1S	70.0	Tucannon (MTR)	2/28/2022	Tucannon (MTR)	2/28/2022	X	Х	
3DD.003D53B19B	7/16/2020		2.2	70.0	Salmon (PCA)	4/6/2021	Columbia (BCC)	6/2/2021	Х		
3DD.003D53B1CD	7/23/2020		R.2	73.0	Walla Walla (NBA)	3/4/2021	Columbia (BCC)	4/26/2021	Х		
3DD.003D53B1D6	7/23/2020		2.2	69.5	Columbia (MC1)	10/22/2020	Columbia (BCC)	5/7/2021	Х		
3DD.003D53B200	7/23/2020		r.1	54.0	Yakima (SAT)	4/13/2021	Yakima (SAT)	1/16/2021	Х		
3DD.003D53B202	7/23/2020		2.2	65.0	Wenatchee (WEN)	4/30/2021	Snake (GRS)	5/19/2021	X		
3DD.003D53B205	7/22/2020		2.2	67.0	Grande Ronde (MR1)	4/21/2021	Snake (GRS)	5/1/2021	X		
3DD.003D53B209	7/22/2020		1.2	71.0	Columbia (RIA)	8/29/2020	Tucannon (JPT)	4/18/2021	X		
3DD.003D53ECA7	9/18/2020	AD	r.2	78.5	Clearwater (SC1)	2/27/2021	Snake (GRS)	5/1/2021	X		
3DD.003D53EE07	9/24/2020		2.2	82.0	Clearwater (SEL)	3/17/2021	Snake (GRS)	5/17/2021	X		
3DD.003D53EE6F	9/28/2020	AD	1.2	66.5	Snake (ACM)	4/8/2021	Snake (ACM)	4/1/2021	X		
3DD.003D53EE76	9/28/2020		r.2	71.0	Snake (GRA)	10/25/2020	Columbia (BCC)	4/24/2021	Х		
3DD.003D53EE98	9/25/2020		1.2	80.5	Clearwater (SC2)	4/14/2021	Clearwater (SC2)	3/3/2021	X		
3DD.003D53EED4	9/18/2020	AD	1.2	86.5	Snake (GRA)	10/12/2020	Snake (GRS)	3/28/2021	X		

					Most Upstro	eam Site	Last Site	Detected	Moving	Upstream	
PIT Tag	Date Encountered at AFF	Fin Clip	Age	Fork Length	Basin and Site	Date	Basin and Site	Date	Downstream at Last Detection	in Summer/ Fall 2021	In Kelt Program
3DD.003D53EF07	9/18/2020		r.2	80.0	Clearwater (LC2)	4/30/2021	Clearwater (LC2)	4/2/2021	Х		
3DD.003D53EF2C	9/22/2020		1.2	82.5	Tucannon (LTR)	4/11/2021	Tucannon (LTR)	4/3/2021	Х		
3DD.003D53EF40	9/22/2020		2.2	83.0	Clearwater (LRU)	3/23/2021	Snake (GRS)	5/16/2021	Х		
3DD.003D53EF53	9/22/2020	AD	1.2	84.5	Snake (GRA)	3/22/2021	Snake (GRS)	4/16/2021	Х		
3DD.003D53EF5C	9/22/2020		r.2	76.0	Snake (GRA)	10/15/2020	Columbia (MCJ)	4/23/2021	Х		
3DD.003D53EFB3	9/29/2020		r	93.0	Snake (GRA)	2/27/2021	Snake (GRS)	5/2/2021	X		
3DD.003D53F00F	9/16/2020		r.2	82.0	Salmon (ZEN)	5/14/2021	Columbia (BCC)	6/7/2021	Х		
3DD.003D53F029	9/16/2020	AD	1.2	76.0	Clearwater (SC2)	3/18/2021	Clearwater (SC2)	3/18/2021	Х		
3DD.003D6316BA	10/2/2020		1.2	76.0	Salmon (USE)	4/4/2021	Snake (GRS)	5/7/2021	Х		
3DD.003D6318DC	10/13/2020		1.1	61.0	Imnaha (GCM)	5/21/2021	Imnaha (GCM)	4/28/2021	X		
3DD.003D6318F8	10/14/2020		2.2	66.0	Tucannon (LTR)	5/5/2021	Tucannon (LTR)	4/30/2021	Х		
3DD.003D631921	10/14/2020	AD	1.2	68.0	Tucannon (JPT)	4/16/2021	Tucannon (JPT)	4/3/2021	X		
3DD.003D631928	10/9/2020		2.1S	64.0	Salmon (WB1)	4/24/2021	Columbia (BCC)	5/29/2021	X		
3DD.003D6319E1	10/6/2020		2.1S	71.0	Yakima (TP2)	4/25/2021	Yakima (TP2)	4/9/2021	X		
3DD.003D631A2F	10/7/2020		2.2	73.0	Clearwater (SC2)	5/25/2021	Clearwater (SC2)	3/16/2021	Х		
3DD.003DA24F9D	8/13/2020		r.2	64.0	Wenatchee (CHW)	5/5/2021	Wenatchee (CHW)	4/6/2021	X		
3DD.003DA24FAA	8/31/2020		1.2	77.5	Clearwater (LRU)	5/14/2021	Clearwater (LRU)	3/18/2021	X		
3DD.003DA24FAD	7/30/2020		2.2	69.0	Grande Ronde (JOC)	3/22/2021	Snake (GRS)	4/7/2021	Х		
3DD.003DA24FB8	8/4/2020		r.2	71.5	Salmon (HYC)	6/1/2021	Salmon (HYC)	6/1/2021	Х		
3DD.003DA24FC9	8/4/2020		2.2	73.5	Grande Ronde (JOC)	4/4/2021	Grande Ronde (JOC)	2/25/2021	Х		
3DD.003DA24FCE	8/20/2020		2.2	65.0	Snake (GOA)	12/1/2020	Tucannon (JPT)	5/14/2021	X		

					Most Upstr	eam Site	Last Site	Detected	Moving	Upstream	
PIT Tag	Date Encountered at AFF	Fin Clip	Age	Fork Length	Basin and Site	Date	Basin and Site	Date	Downstream at Last Detection	in Summer/ Fall 2021	In Kelt Program
3DD.003DA24FD2	8/6/2020		1.2	69.5	Methow (TWR)	4/4/2021	Methow (MRC)	4/7/2021	X		
3DD.003DA24FD8	9/16/2020		2.2	72.0	Salmon (KRS)	5/27/2021	Columbia (JDJ)	6/12/2021	X		
3DD.003DA24FDC	8/6/2020		r.2	64.5	Okanogan (OBF)	4/22/2021	Columbia (RRJ)	4/30/2021	Х		
3DD.003DA24FDD	8/6/2020		1.1S1	64.5	Yakima (PRO)	9/15/2020	Columbia (BCC)	5/18/2021	Х		
3DD.003DA24FE5	8/20/2020		1.2	63.5	Salmon (HYC)	5/12/2021	Salmon (HYC)	5/12/2021	X		
3DD.003DA24FF0	8/4/2020		2.2	68.5	Yakima (SAT)	3/12/2021	Yakima (SAT)	2/22/2021	X		
3DD.00776669B4	8/4/2020		r.2	71.5	Tucannon (MTR)	4/18/2021	Tucannon (MTR)	3/27/2021	Х		
3DD.0077A2F97F	8/24/2020		2.2	64.0	Salmon (USE)	3/28/2021	Snake (GRS)	5/9/2021	X		
3DD.0077BB89FA	7/23/2020		1.1	56.5	Salmon (LLR)	6/30/2021	Salmon (LLR)	5/1/2021	X		

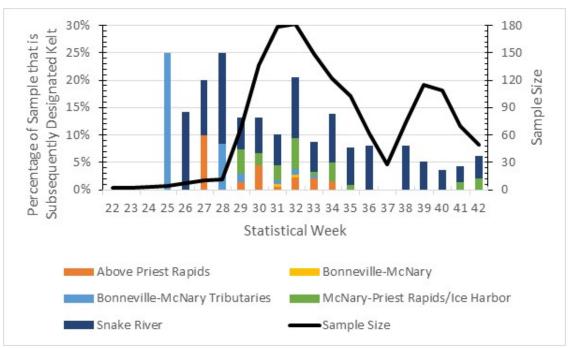


Figure 23. Percentage of run designated as kelt by week sampled in 2020 at Bonneville Dam and the most upstream detection area.

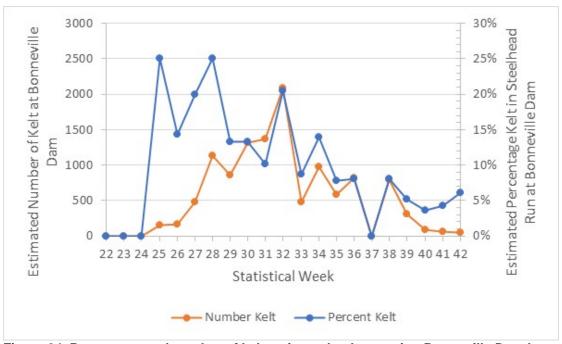


Figure 24. Percentage and number of kelt estimated to be passing Bonneville Dam by Statistical Week as estimated by this project in 2020.

Many kelts that are detected moving out of the system are last detected in the juvenile bypasses of the major Columbia and Snake dams. For 2020 tagged fish, the juvenile bypass at these dams detected kelts: Bonneville (1), John Day (2), McNary (2), Lower Monumental (1), Little Goose (1), Lower Granite (1), and Rocky Reach (9) (Table 37 and C2). Another major exit location for kelts is the Bonneville Dam Corner Collector, where 33 steelhead tagged by this study were last detected migrating downstream in spring and summer 2021. In addition, an antennas at a Lower Granite Dam spillway (GRS) detected a total of 56 steelhead that were part of this study, 43 of which were detected after January 1, 2021. For 34 of these fish, they were last detection in the system at GRS. Of the 158 identified kelts, 118 of them were tracked into the Columbia River tributaries; many had multiple detections in the tributaries as they made their way to the spawning grounds and back out after spawning, 70 kelts with this behavior (Tables C1, C2, and Figure C1 – map of all detection locations). This year, 7 steelhead were collected by the CRITFC Kelt Program, and all were collected at Prosser Dam as they were moving downstream after spawning. Three steelhead tagged and track in 2020 behaved like repeat spawners, as they were tracked upriver, and in most cases into tributaries, during 2020 and spring of 2021, and then tracked again in either the late summer, fall, or early winter 2021, moving upstream through the Bonneville Dam fish ladders and also detected further upriver. One of these fish was in the Kelt Program and was release in the Yakama River where it moved upriver.

We have also updated information on kelts/repeat spawners from several past annual reports with data from 2017/2018/2019 movements. Some steelhead already identified as kelts or repeat spawners in the past reports have new information added; others are newly added because they were detected a year or two later moving upriver again to spawn. Up to three past years of tagged steelhead have appeared in the detection system; see Table C4 in Appendix C for new information on steelhead tagged in 2017 (no records), 2018 (one record), and 2019 (five records).

Table 37. PIT tagged steelhead sampled at Bonneville Dam subsequently designated as kelt by being last detected moving downstream the year after sampling or being last detected moving upstream the year after sampling for sampling years 2009-2020. Data is categorized by last detection site.

						Tag Y	'ear					
Last site	2020	2019	2018	2017	2016	2015	2014	2013	2012	2011	2010	2009
Bonneville Corner Collector	33	24	17	14	32	25	38	30	25	10	23	61
Bonneville Juvenile Bypass	1	6	2	6	1	5	3	6	5	1	4	7
Bonneville Dam Bradford Island Ladders heading downstream	0	1	0	0	0	2	1	3	2	0	0	0
Bonneville Dam ladders heading downstream	0	1	1	1	0	0	0	0	0	0	0	0
Estuary Trawl or Pile Dikes (TWX or PD7)	1	0	2	1	1	0	0	2	2	0	0	1
Ice Harbor Juvenile Bypass	0	1	0	0	2	1	0	0	0	1	6	0
Ice Harbor Ladders heading downstream	0	0	0	0	0	0	0	1	0	NA	NA	NA
John Day Juvenile Bypass	2	3	3	3	20	6	2	8	6	3	11	3
Little Goose Juvenile Bypass	1	5	7	5	11	5	2	9	5	11	13	6
Lower Granite Juvenile Bypass	1	5	11	7	5	0	3	4	3	4	10	3
Lower Monumental Juvenile Bypass	0	5	5	5	4	0	2	7	1	12	9	4
Lower Granite Dam adult ladders moving downstream	0	0	1	0	0	0	0	0	0	0	0	0
Lower Granite Spillway (new in 2019)	34	24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Washington Shore McNary Dam ladder downstream	0	0	3	1	3	0	1	0	0	0	2	1
McNary Dam Juvenile Bypass	2	1	2	3	4	1	1	4	4	3	2	4
Rocky Reach Juvenile Bypass	9	3	9	5	1	2	10	1	0	4	6	7
Migrating downstream in tributaries	70	35	22	9	2	6	NA	4	3	0	0	0
Repeat spawners, at Bonneville Dam or above migrating upstream	3	3	0	4	4	4	5	12	1	NA	NA	NA
Trapped by CRITFC Kelt Program												
Snake Basin	0	3	10	6	7	5	4	11	NA	NA	NA	NA
Yakima Basin	7	6	4	0	1	1	6	6	1	NA	NA	NA
Total ⁸	158	121	85	64	98	63	77	108	58	49	86	97
Estimated kelt as percentage of run	10.7%	14.9%	9.5%	7.6%	6.1%	5.3%	4.5%	7.2%	4.0%	3.1%	5.2%	4.8%
Additional steelhead detected migrating upstream in subsequent migration year not previously reported	1	2	9	7	0	0	2	5	13	3	9	5
Minimum number of kelts	159	123	94	71	98	63	79	113	71	52	95	102

⁸ Since some kelt were both detected downstream and trapped by the CRITFC Kelt Program, the total may exceed the sum of the detections by site plus the number trapped by the Kelt Program.

Among the 1,436 steelhead sampled at Bonneville Dam where ocean age could be estimated, when kelt were compared to non-kelt, kelt had a higher percentage of one-ocean fish (50.8% vs. 47.3%) and lower percentage of two ocean fish (49.2% vs. 52.6%) (Table 38). The mean length of non-kelt was 72.3 cm compared to 68.9 cm for kelt.

Table 38. Ocean age composition of steelhead designated as kelt or non-kelt sampled at Bonneville Dam in 2020.

Run	Number Ageable for Ocean Age	One-Ocean (x.1)	Two-Ocean (x.2)	Three-Ocean (x.3)
Kelt	143	13.3%	86.7%	0.0%
Non-Kelt	1293	11.4%	88.5%	0.2%

Straying

Steelhead stray rates by stock were estimated with stock classification by two different criteria. The first was for stock that could be designated by PBT, presumably the most accurate genetic stock classification (Table 39). For those fish for which PBT was not available, stock classifications were made using Genetic Stock Identification (GSI) (Table 40). The overall stray rate for PBT-classified steelhead was 14.4% and 20.5% for GSI-classified steelhead.

Table 39. Showing final-PIT-fate categories by stock as determined using PBT for fish tagged in 2020. Fate categories are categorized by color. Grey is neutral (meaning last detected on route to expected destinations), green is on target (meaning last detected at their expected destination), yellow is putative overshoot meaning a fish last detected in an area adjacent to its expected destination, and red is putative stray meaning a fish was last detected in tributaries or the mainstem outside their normal route to their expected destination. Stray rates are also tabulated.

Dam/Basin	Bonneville	The Da	les Deschute	s John Day	McNai	γ					Cleary	vater	Gr. Ror	nde			Wena	tchee		Meth	ow										
Stock Classification using Parental Based Tagging (PBT)	Bonneville-Bradford Ladder Bonneville-WA Shore Ladder Bonneille WA Ladder Slots Spring Creek Hatchery	Lyle Falls Fishway, Klickitat R The Dalles-Oregon Shore	alles-WA	Vodrin Springs River John Day-Oregon Shore John Day-WA Shore	Upper John Day River McNary Dam-Oregon Shore	McNary Dam-WA Shore Walla Walla	Ice Harbor	Aonument	le Tuca	Little Goose Dam Lower Granite Dam	Lower SF Clearwater	Lower SF Clearwater	Wallowa River (rkm 14)	Upper Salmon Imnaha River	Priest Rapids Dam	Rock Island Dam	Tumwater Dam	Chiwawa River	Wells Dam	Methow River-Carlton	Methow River	Lower Okanogan River	lotal	= -	OII I al get	Putative overshoot	%Neutral	%On Target	%Putative Stray	%Putative overshoot	% Strays (strays/(strays+Ontarget)
Columbia RKM	234 234 234 269	290 308	308 328 3	28 347 347	351 470 4	470 50	9 522	522	522 !	522 522	2 522	522	522	522 522	2 635	5 730	754	763	830	843	843	858									
PTAGIS Site	BO1 BO3 BO4 SCL	LFF TD1 T	DSF WS	R JO1 JO2 J	D1 MC1 M	C2 JPT	ICH	LMA N	ITR GO	OA GRA	SC1	SC2 \	WR1 (USE IR1	PRA	RIA	TUF	RRF	WEA	LMR	MRC (OKL									
Dworshak	1 35	19	8	5 2	7	3	6	3		4 161	l 1												255	93 1	62	0	0 36.5	63.5%	0.0%	0.0%	2.5%
Eastbank																	1						1	0	1	0	0.0	% 100.0%	0.0%	0.0%	0.0%
Grande Ronde	12	7	1	3 2	2	1 :	1	4	2	4 34	1				1	1			2				76	71	0	5	0 93.4	% 0.0%	6.6%	0.0%	57.1%
MGILCS	5	9	2 17	1		1				1 8	3				1								45	27	1	1 7	0 60.0	% 2.2%	37.8%	0.0%	44.4%
Oxbow	1	4	1 2	2	3	1	2	1		2 41	ı												60	17	41	2	0 28.3	68.3%	3.3%	0.0%	7.7%
Pahisimmeroi	6	6	3	2 2	1 4	1	2			41	1			2									70	67	2	1	<mark>0</mark> 95.7	% 2.9%	1.4%	0.0%	0.0%
Sawtooth	1 5	4	1 1	1	1		2			1 54	1			3	1	1			2	1		1	79	70	3	6	0 88.6	% 3.8%	7.6%	0.0%	0.0%
Skamania	1 23	4 1						1															30	26	4	0	0 86.7	% 13.3%	0.0%	0.0%	0.0%
S. Fork Clearwater	16	18	4 1	2 1		1	3			66	5	2											114	111	2	1	0 97.4	% 1.8%	0.9%	0.0%	20.0%
Touchet					1	1										1	L						3	2	0	1	<mark>0</mark> 66.7	% 0.0%	33.3%	0.0%	0.0%
Tucannon				1	1			1															3	3	0	0	0 100.0	% 0.0%	0.0%	0.0%	0.0%
Upper Salmon	1				1	1				1 10)	_						1					15	14	0	1	0 93.3	% 0.0%	6.7%	0.0%	0.0%
Wallowa	1 9	5	4	1 2	1		2			1 31	1		1									1	59	52	1	6	0 88.1	% 1.7%	10.2%	0.0%	0.0%
Wells	1			1															13		1_	1	17	2	15	0	0 11.8	% 88.2%	0.0%	0.0%	0.0%
Wells-Methow		1																	3				4	1	3	0	0 25.0	75.0 %	0.0%	0.0%	0.0%
Wells-Okanogan	1																	1	1			1	4	2	2	0	0 50.0	% 50.0%	0.0%	0.0%	0.0%
Winthrop			1																3	1			5	5	0	0	0 100.0	% 0.0%	0.0%	0.0%	100.0%
Total	2 2 115 0	4 74	21 25	1 18 9	1 21	10	1 17	10	2	14 446	5 1	2	1	5 3	1 2	2 1	1	2	24	2	1	4	840	563 2	37	40	0 67.0	% 28.2%	4.8%	0.0%	14.4%

Table 40. Showing final-PIT-fate categories by stock as determined using GSI for fish tagged in 2020. Fate categories are categorized by color. Grey is neutral (meaning last detected on route to expected destinations), green is on target (meaning last detected at their expected destination), yellow is putative overshoot meaning a fish last detected in an area adjacent to its expected destination, and red is putative stray meaning a fish was last detected in tributaries or the mainstem outside their normal route to their expected destination. Stray rates are also tabulated.

										Jo	ohn Day																																																										/	
	Bonne	ville \	Wind River	Hood River	Klicki	tat Th	ne Dalles		Deschut	tes	Dam	Joh	n Day Riv	er	Umatilla	McNar	ry	Walla	Walla			Tucann	non				Clea	water					Grande Ro	ınde				Salmon Ri	River		Ir	mnaha				Yakim	a					Wen	atchee		N	lethow			Okar	ogan										
Stock Classification using Genetics Stock Identification (GSI)	Bonneville Bonneville-Cascades Ladder	Bonneville-WA Shore Ladder Bonneille WA Ladder Slots Trout Creek	Trout Creek at 43 Road	Moving Falls Ladder Hood River Mouth	Lyle Falls Fishway, Klickitat R Klickitat	Little Klickitat	The Dalles-Oregon Shore The Dalles-WA Shore	15 Mile Creek	Deschutes R. Mouth Sherar's Falls		John Day-Oregon Shore John Day-WA Shore	John Day River	Bridge Creek South Fork John Day	John Day River	Inree Mile Dam U matilla Riverat rkm 9	McNary Dam-Oregon Shore	McNary Dam-Washington Shore Walla Walla River Bridge	Touchet River	l ouchet River-Boiles Bridge Mill Creek	N ursery Bridge	Ice Harbor Dam Lower Monumental Dam	Middle Tucan non	Tucannon Fish Hatchery	Little Goose Lower Granite	Lapwai Creek	Sweetwater Creek Fast Fork Potlatch	Dworshak Hatchery	Lolo Creek	Lochsa River Lower SF Cleanwater	Upper Selway	Asotin Creek	Joseph Creek Wenaha River	Minam River	Wallowa River rkm 32	U pper Grand Ronde rkm 155	Catherine Creek EFSF Salmon River	SF Salmon-Guard Station Bridge	Pantner Creek N F Salmon	Hayden Creek	Upper Salmon River at rkm 437 Upper Salmon River at rkm 460	Lower Imaha at rkm 7	Lower Imnaha km 10 Bie Sheen Creek	bg sireep Greek	Satus Creek	Simcoe Creek Toppenish Creek	Sunnyside	Lower Naches Roza Dam	Taneum Creek	Swauk Creek Teanaway River	Ringgold Hatchery	Priest Rapids Dam Rock Island Dam	Peshastin Creek U pper Peshastin Creek	Upper Wenatchee	Wells Dam	Gold Creek Methow River-Carlton	Chewuch River-Winthrop	Upper Chewuch	Loup Loup Creek	O mak Creek	Salmon Creek Antoine Creek	Zosel Dam Aina Mila Creek	Nine Mile Creek					ı	Stray	overshoot	
Columbia RKM	234 234	234 234 251	51 251 25	1 273 273	3 290 290	290	308 308	309 3	328 328	328	147 347	351 3	351 351	351 4	65 465	470 4	470 509	509	09 509	509 5	22 522	522	522 52	22 522	522	522 52	2 522	522 5	522 52	2 522	522 5	22 522	522 5	22 522	522 5	522 522	522 5	22 522	522	522 52	2 522	522 52	22 539	539 5	539 539	9 539 5	39 539	539 5	39 539	567 639	9 730	754 754	754 75	64 830	843 843	843	843 85	8 858	858 8	58 858	858 85	.58	entra	n-Target	ray	Neutral	On Targe	Putative	Putative	ray Rate
PTAGIS Site	BO1 BO2 E	303 BO4 TRC	C TC4 WR	J MVF HRM	LFF KLR	LKR TD	1 TD2	158 DR	RM DSF	WSR JO:	1 JO2	JD1 BR	RO SJ2	JDM TN	1F UMW	MC1 M	IC2 WWE	HST BI	T MCD	NBA ICI	H LMA	MTR T	FH GO	A GRA	LAP S	WT EPF	R DWL	LC2 LF	RU SC2	. SW2 ₽	ACB JO	C WEN	MR1 WP	1 WR2	UGR CC	CW ESS	KRS PC	A NFS	HYC L	USE USI	IR1 I	IR2 BSC	C PRO S	SAT SN	M1 TP2	SUN LN	IR ROZ	TAN SV	VK LMT	RSH PRA	A RIA P	ES PEU	UWE NAI	U WEA	GLC MRC	C CRW (CRU OK	L LLC (OMK SA	1 ANT	ZSL NM	AC N	ž	ō	5 6	%	8	*	*	8
Lower Columbia	1	1																																																													2 0	0	٠,	2 0.0%	0.0%	0.0%	100.0%	NA
Skamania		2 4	2 1	1 2	1																																																									15	13 6	7	9	46.2%	53.8%	0.0%	0.0%	0.09
Willamette		1		- 1																																																										_	2 0		1	100.0%	0.0%	50.0%	50.0%	100.09
Big White Salmo Klickitat		1	- 1	- 1	2	2	2																																																								15 5			22 20/	E2 20/	0.0%	12 29/	0.00
MGILCS	1	33 4	*	-	,	1	10 3	2	2 2	2 4	5 5	6		. 6	5 '	18	7	1 1	2 :	2 1	2 1	3	- 1	2 26	,	2	1				/ , /	/	/ /	4 7	Δ	2			- 1			2	3 2			- 1		1 1		3	1 1	1 1		4	1	2	- 1	4		1		21	119 115	55	40	52.5%	25 1%	22.4%	0.0%	47 19
Yakima		1 1					2		1																							/ 7		/ 7									2	1	1	1 2 1	4	1	1 1		1							1			I = I	2	23 4	1 14	-	17.4%	60.9%	21.7%	0.0%	26.3%
Yakima Upper Columbia SF Clearwater		1					-		- 1						1									-											- 1																1 2		- 1	1		- 1	- 1		- 1	1 1		1	19 1	10	8	5.3%	52.6%	42.1%	0.0%	44.4%
SF Clearwater		2									1 1		1											10	1			2		4										1																						2	20 14	1 1	5	70.0%	5.0%	25.0%	0.0%	83.3%
Upper Clearwate		1														1													4	1																																	7 2	2 5	0	28.6%	71.4%	0.0%	0.0%	0.0%
SF Salmon											1													1													1																										4 2	2 2	0 (50.0%	50.0%	0.0%	0.0%	0.0%
MF Salmon																								ε	5																																						6 6	0	0 (100.0%	0.0%	0.0%	0.0%	NA
Upper Salmon							1										1							4														1 1	1		1									1												1'	10 6	5 2	2 (60.0%		20.0%	0.0%	50.0%
Grand Total	2 1	47 10	2 2	1 3 1	1 4	1 3	15 3	2	3 3	3 4	8 6	6	1 2	. 6	7 :	2 19	8	1 1	2 2	2 1	2 1	3	1	2 52	2 3	2	1 1	2	4	1 1	2	7 2	4	1 2	5	2	1	1 1	1 1	2	1 1	2	3 4	1	1	2 2	4 1	. 2	1 1	5	3 3	1 1	1	1 4	1	2 1	2	1 1	1	2 1	1	1 34	346 162	104	70	47.5%	30.5%	20,5%	1.5%	40,2%

RESULTS-SOCKEYE9

Bonneville Sample Size and Upstream Detection

In 2020, a total of 1,757 Sockeye Salmon were sampled for this project at the Bonneville Dam Adult Fish Facility between May 21 and August 13 (Table 41). Of these, 1,751 were tagged, to which were added 5 recaptures of Sockeye Salmon which had been previously PIT tagged as juveniles on their downstream migration. There was one additional recapture of a Sockeye Salmon first sampled the morning of June 25, 2020, and tagged with PIT tag 3DD.003D3654BD and then recaptured later that day and double tagged with tag 3DD.003D3654B5. In the analyses for this report, this fish will be considered to have a single tagging event and the detections upstream merged. Twenty-one Sockeye Salmon were not detected after release and there were 5 mortalities, resulting in a total of 1,730 Sockeye Salmon tracked upstream (which will hereafter be referred to as Bonneville-tagged Sockeye Salmon although this includes recaptures). In 2020, sampling restrictions resulting in raised picket leads on 33 sampling days during weeks Sockeye Salmon were sampled; 25 of which were due to high shad abundance and 8 days due to high water temperatures (21.1 - 22.2C, Table 41)¹⁰. An additional 4 days of sampling were lost due to a 4-day weekly sampling limit when temperatures were between 21.1 and 22.2C in weeks 30 and 31.

The tracking of 1,730 Sockeye Salmon generated 72,113 weir detections, which were grouped into 13,881 site detections at 46 sites. Based on Sockeye Salmon PIT tagged at Bonneville Dam by this study, the mainstem dam with the highest percentage passing upstream undetected in 2020 was John Day Dam (4.5%, Table 42). In the Okanagan Basin, Zosel and Skaha dams had high rates of PIT-tagged Sockeye Salmon missing detection due to high river flows allowing Sockeye Salmon to avoid detection by migrating through the unmonitored spillway rather than through fish ladders where there was PIT tag detection. Maps and table of sites found in the Appendix C (Table C1 and Figures C1, C22 and C25) show the sites and the categorical ranges of detection numbers at the sites throughout the Columbia Basin.

⁹ The information presented in this section of the report is a summary of Fryer et al. 2021.

¹⁰ Raising picket leads is required by trap regulations and decreases the number of fish going through the trap and can introduce trap biases (Fryer et al. 2011).

Table 41. Number of Sockeye Salmon sampled, and PIT tagged at Bonneville Dam and tracked upstream by date and statistical week in 2020.

		Run			Previo				t or of ladder as	Days San	npling Restr in Effect	ictions
Sampling Dates	Statistical Week ¹¹	Percent of R	Sampled (N)	Tagged	At AFF by this project	Other Agencies	Mortalities	Not Detected After Tagging	Detected at or upstream of Bonneville lac	Reduced Temperature	Reduced Shad or Salmon Abundance	No Sampling Temperature
5/21-6/5	22-23	0.5	19	19	0	0	0	0	19	0	5	0
6/8-6/12	24	3.1	109	108	0	1	0	7	102	0	5	0
615-6/19	25	11.2	293	293	0	0	1	3	289	0	5	0
6/22-6/26	26	27.7	352	350	1	1	0	1	350	0	5	0
6/29-7/2	27	35.5	391	389	0	2	2	3	386	0	3	0
7/9-7/10	28	16.5	121	121	0	0	0	0	121	0	2	0
7/13-7/17	29	3.9	264	264	0	0	1	3	260	0	0	0
7/20-7/24	30	1.3	146	145	0	1	0	4	142	0	0	1
7/27-7/30	31	0.3	51	51	0	0	1	0	50	2	0	1
8/3-8/6, 8/10-8/13	32-33	0.1	11	11	0	0	0	0	11	6	0	2
Total			1757	1751	1	5	5	21	1730	8	25	4

¹¹ Statistical weeks are sequentially numbered calendar-year weeks. Excepting the first and last week of most years, statistical weeks are seven days long beginning on Sunday and ending on Saturday. In 2020, for instance, Statistical Week 23 began on May 31 and ended on June 6.

Table 42. Percentage of Bonneville Dam PIT tagged Sockeye Salmon not detected at upstream dams and in-stream PIT tag arrays on their migration route for 2006-2020.

		Percentage Not Detected by Dam and Year															
Dam/Array	Type	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Mean
Bonneville (BO1 & BO4)	Α	0.2	2.1	0.4	0.6	0.7	0.5	1.8	0.4	0.7	1.6	2.8	0.2	1.1	1.5	1.0	1.
The Dalles	Α	-		-		-	-		1.6	0.3	0.6	0.4	2.1	0.9	0.5	1.4	1.
John Day	Α	-		-		-	-							2.8	3.3	4.5	3.
McNary	Α	3.1	6.5	10.1	5.0	3.8	1.6	12.1	2.1	3.8	1.1	2.4	5.2	2.9	2.9	2.9	4.4
Priest Rapids	В	0.0	0.8	0.3	0.3	0.6	0.2	0.4	0.0	0.2	0.4	0.3	0.0	0.1	0.0	0.0	0.2
Rock Island	В	1.3	6.8	6.9	2.6	6.2	4.4	5.4	4.4	41.5	10.2	2.9	5.9	28.3	4.1	2.8	8.9
Rocky Reach	В	12.3	0.7	0.2	0	0.5	0.7	1.4	0.0	0.3	0.0	0.0	0.7	0.2	0.0	0.0	1.1
Wells	В			-		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ice Harbor	Α			0.0	20.0	0.0		0.0		12.5	0.0	0.0	0.0	0.0	0.0	0.0	3.0
Lower Monumental	Α			1	-	-	1				0.0	0.0	0.0	0.0	0.0		0.0
Little Goose	Α			-			1				0.0	0.0	0.0	0.0	0.0		0.0
Lower Granite	Α									0.0		0.0	0.0	0.0	0.0		0.0
Tumwater	В			1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.712	0.1
Zosel (ZSL)	С						98.6	83.0	87.3	0.9	0.0	1.6	74.5	57.5	0.0	76.2	48.0
Lower Wenatchee (LWE)	D									48.0	17.9	54.7	49.6	68.4		78.4	50.0
Upper Wenatchee (UWE)	D									52.7	24.6	9.7	9.3	9.9		11.3	17.2
Lower Okanagan (OKL)	D									68.9	13.8	59.4	47.4	50.1	66.7	40.4	49.5
Okanagan Channel (OKC)	D											16.9		7.7	5.3	5.7	8.8
Skaha (SKA)	С												-		0.0	41.5	20.8
Detection Type A	Anten	nas in f	ish ladde	ers at a d	am with r	navigation	n locks pi	roviding u	pstream	migrating	PIT tage	ged fish a	n means t	to pass u	ndetected	d	
=	Antennas in fish ladders at a dam with no passage route for upstream migrating PIT tagged fish other than through ladder PIT tag antennas																
С	Antennas in fish ladders at a dam where, at high flows, upstream migrating PIT tagged fish can pass through unmonitored spillways																
D	In-stre	-stream antennas where PIT tagged salmonids can pass undetected. In general, the higher the flow, the lower the detection rate.															

¹² The two Sockeye Salmon not detected likely passed during a power outage that occurred at Tumwater Dam between 0540 7/21/20 and 0106 7/22/20. These were the first Sockeye Salmon tagged by this study at Bonneville Dam missing detection at Tumwater Dam since antennas were installed at this site in 2008.

Age Composition

The predominant age group in 2020 was Age 1.2 at 98.6% of the run, followed by Age 1.1 at 0.9% of the run (Table 43). Over the run, the percentage of Age 1.2 Sockeye Salmon ranged from 90.3% (Week 30) to 100.0% (weeks 24, 28, 32-33). The only other age group with weekly percentage greater than 3.0% was Age 1.1 in weeks 22-23 (5.6%) and in Week 30 (7.1%, Figure 25).

Table 43. Weekly and total age composition of Sockeye Salmon at Bonneville Dam as estimated from scale patterns in 2020. Composite estimates are weighted by the

percentage of the run	passing	Bonneville	Dam in	each week.

Statistical	% of	N	Age Class							
Week	Run	Ageable	1.1	1.2	2.1	1.3	2.2			
22-23	0.5%	18	5.6%	94.4%	0.0%	0.0%	0.0%			
24	3.1%	106	0.0%	100.0%	0.0%	0.0%	0.0%			
25	11.2%	260	2.7%	96.5%	0.0%	0.8%	0.0%			
26	27.7%	342	1.2%	98.0%	0.3%	0.3%	0.3%			
27	35.5%	385	0.3%	99.5%	0.0%	0.0%	0.3%			
28	16.5%	120	0.0%	100.0%	0.0%	0.0%	0.0%			
29	3.9%	257	1.2%	98.4%	0.0%	0.4%	0.0%			
30	1.3%	113	7.1%	90.3%	0.0%	2.7%	0.0%			
31	0.3%	39	2.6%	97.4%	0.0%	0.0%	0.0%			
32-33	0.1%	11	0.0%	100.0%	0.0%	0.0%	0.0%			
Composite	100.0%	1651	0.9%	98.6%	0.1%	0.2%	0.2%			

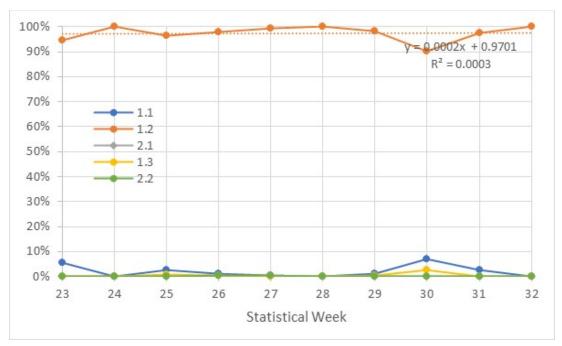


Figure 25. Weekly age composition estimates by Statistical Week for Sockeye Salmon sampled at Bonneville Dam in 2020.

Upstream Recoveries, Mortality, and Escapement

The percentage of Sockeye Salmon passing Bonneville Dam that were estimated to pass upstream sites (Figure 26) was higher in 2020 than the 2006-2020 mean at all sites but Tumwater Dam (Table 44)¹³.

_

¹³ Tumwater Dam is only passed by Wenatchee stock Sockeye Salmon so rate differences to Tumwater Dam (as well as Rocky Reach and Wells dams) also reflect annual variations in stock composition.

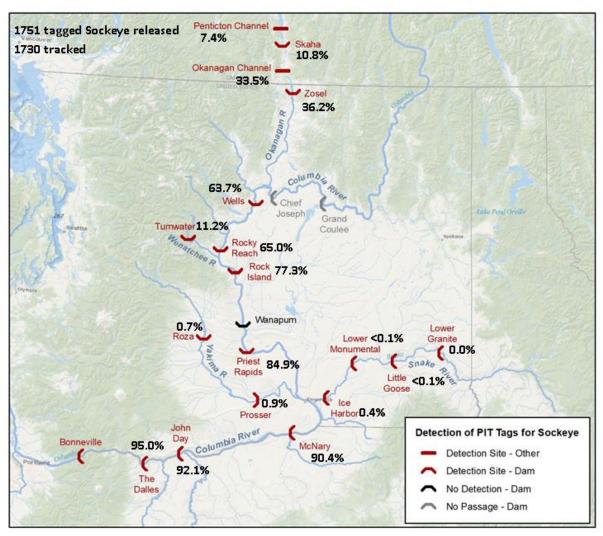


Figure 26. Map of the Columbia River Basin showing the number of fish PIT tagged at Bonneville Dam, and the percentage of the run estimated to pass upstream dams in 2020.

Table 44. Estimated survival of Sockeye Salmon PIT tagged at Bonneville Dam passing upstream dams 2006-2020.

		Percentage by Year														
Dam or Site	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Mean
The Dalles								89.5	93.1	82.8	94.0	89.3	93.3	94.6	95.0	91.4
John Day													90.9	92.7	92.1	91.8
McNary	88.4	84.0	89.4	85.7	81.5	76.1	82.4	83.6	88.3	54.0	89.2	81.7	88.9	84.2	90.4	83.2
Priest Rapids	84.8	77.4	86.3	82.1	78.4	71.9	77.3	78.6	84.5	44.9	85.3	74.6	85.4	82.4	84.9	78.5
Rock Island	81.1	73.4	85.8	80.2	76.3	68.9	75.0	74.2	79.5	40.6	81.6	70.8	80.7	81.6	77.3	75.1
Rocky Reach	58.8	62.2	73.7	67.1	63.7	55.3	62.1	52.4	65.3	31.6	60.5	43.7	73.9	73.4	65.0	60.5
Wells	53.8	60.9	71.1	65.2	62.6	53.9	60.8	50.5	64.2	29.4	59.3	42.5	72.7	72.4	63.7	58.8
Tumwater			9.4	12.2	13.3	14.2	12.9	20.9	13.6	8.3	20.8	25.8	6.0	8.7	11.2	13.6
Okanagan Channel (OKC)					32.5	40.2	25.9	30.7	22.5	2.2	38.1	25.1	45.7	44.6	33.5	32.5

Survival rates were also calculated using similar methods for returning adults from a group of juvenile Sockeye Salmon (project goal is 3000) captured and PIT tagged annually at the Rock Island Dam juvenile bypass since 2008¹⁴ (Table 45). Both Wenatchee and Okanagan juvenile Sockeye Salmon are tagged at this site, making it a mixed stock most similar to Sockeye Salmon tagged as adults at Bonneville Dam¹⁵. Sample sizes of returning adults from the Rock Island tagging program are often small with only 16-35 returns annually between 2016-2019, however this increased to 78 returning in 2020 (Table 45). Sockeye Salmon tagged by this program which passed Bonneville Dam in 2020 had survival rates from 0.7 to 2.9 percentage points higher than those tagged as juveniles at Rock Island Dam at all 5 dams (Bonneville-Rock Island) passed by both stocks (Figure 27). Annual survival rates for these fish from Bonneville Dam to Priest Rapids Dam are compared with adults tagged by this study at Bonneville Dam in Figure 28¹⁶. This survival rate was greater for returning Rock Island-tagged juvenile salmon compared to Bonneville-tagged adults in 8 out of 14 years, however only in 2018 was this difference significant at α =0.05 (p=0.002).

Upstream of Rock Island Dam, some differences are apparent for Rock Island-tagged Sockeye Salmon which likely reflect a higher percentage of Wenatchee versus Okanagan stock Sockeye Salmon in the returning Rock Island-tagged Sockeye Salmon compared with those tagged at Bonneville Dam (Figure 28).

¹⁴ Tagging of juvenile Sockeye Salmon at Rock Island Dam has occurred since 1992; however, returns from these fish were lower and there were fewer detection sites prior to 2008.

¹⁵ Juvenile Sockeye Salmon are also tagged in the Okanagan and Wenatchee basins. However, these programs have a shorter data set in terms of years tagged with collection methods and tag numbers that have varied by year.

¹⁶ Priest Rapids was chosen as it is the last dam with a high PIT tag detection rate passed by both Okanagan and Wenatchee Sockeye Salmon.

Table 45. Survival of Sockeye Salmon PIT tagged as smolts at Rock Island Dam, on their adult upstream migration from Bonneville Dam to upstream dams for years 2008-2020¹⁷.

•		Percentage by Year and Mean of All Years												
Dam	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Mean
# at Bonneville	38	33	130	125	121	66	155	128	35	16	32	20	78	74.9
# Tagged at Rock Is.	1910	2059	3528	2977	3231	2674	3131	1689	4109	2210	3332	2859	3115	2809
The Dalles	No	No PIT tag detection at this site 87.9 92.9 85.9 82.9 87.5									100.0	100.0	93.6	91.0
John Day		No PIT tag detection at this Site									100.0	100.0	89.7	100.0
McNary	89.5	100	82.3	74.4	74.4	80.3	87.1	60.2	74.3	81.3	100.0	90.0	89.7	82.8
Priest Rapids	89.5	93.9	81.5	73.6	71.9	74.2	83.9	54.7	74.3	68.8	100.0	85.0	83.3	79.3
Rock Island	81.6	90.9	79.2	68.8	69.4	68.2	77.4	46.9	68.6	68.8	93.9	85.0	74.4	74.9
Rocky Reach	55.3	55.3 87.9 70.0 55.2 48.8 56.1 60.0 36.7 45.7 68.8								65.6	55.0	56.4	58.8	
Wells	55.3	87.9	68.5	52.8	43.8	56.1	58.7	32.8	42.9	62.5	62.5	55.0	55.1	56.6
Tumwater	26.3	3.0	10.0	14.4	23.1	10.6	16.1	13.3	22.9	6.3	25.0	25.0	16.7	16.3

_

¹⁷ Years prior to 2008 were not included due to low sample sizes for returning Sockeye Salmon tagged as juveniles at Rock Island Dam. (From 2002-2007, the number of Sockeye Salmon PIT tagged at Rock Island Dam as juveniles detected returning to Bonneville ranged between one and eight fish annually.) Year 2013 the first year for detection at The Dalles Dam, and 2018 the first year for John Day Dam.

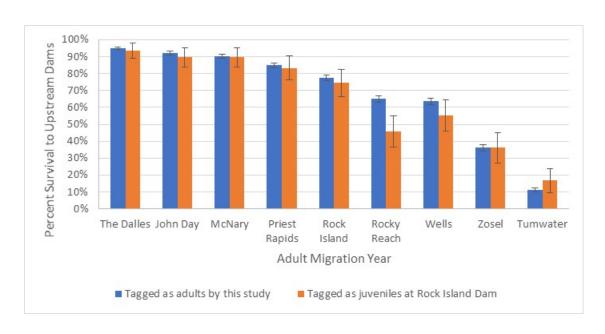


Figure 27. Estimated percentage of Sockeye Salmon passing Bonneville Dam detected at or upstream of The Dalles, John Day, McNary, Priest Rapids, Rock Island, Rocky Reach, Wells, Zosel and Tumwater dams with 90% CI for Sockeye Salmon PIT tagged as juveniles at Rock Island Dam and as adults at Bonneville Dam in 2020.

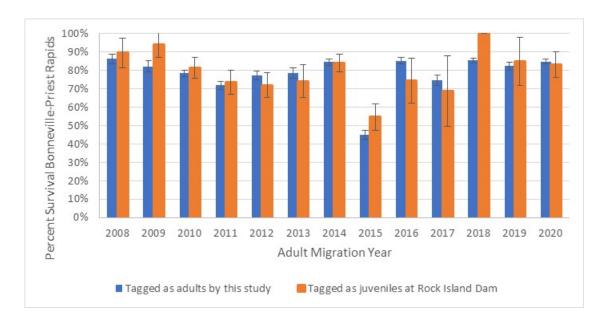


Figure 28. Annual estimated survival rate with 90% CI from Bonneville Dam to Priest Rapids Dam for adult Sockeye Salmon tagged by this study and for returning Sockeye Salmon tagged as juveniles at Rock Island Dam 2008-2020. (Priest Rapids Dam was chosen for this comparison as it is the most upstream dam with consistently high rates of PIT tag detection passed by both Okanagan and Wenatchee Sockeye Salmon.

The estimated escapement based on upstream PIT tag detections of the Bonneville-tagged Sockeye Salmon was greater than the number of Sockeye Salmon counted at The Dalles, John Day, and McNary dams, but less at Rock Island, Priest Rapids, Rocky Reach, Wells, and Tumwater dams (Table 46, Figure 29). The PIT tag estimates show a consistent decrease in Sockeye Salmon escapement estimates as the run progresses upstream which is to be expected as fisheries and other sources of mortality take their toll. However, the visual dam counts show an irregular pattern of increases and decreases as the Sockeye Salmon run progresses upstream. There were more Sockeye Salmon counted at John Day Dam (309,959) than at any other dam upstream of Bonneville Dam on the river and more Sockeye Salmon were counted at Priest Rapids Dam than downstream at McNary Dam. PIT tag estimates for Snake River and Yakima River dams were based on very few detections (1 to 6 for the Snake River, 12 at Roza, and 16 at Prosser), resulting in larger differences between PIT and visual estimates for these sites.

Table 46. Estimated Sockeye Salmon escapement from both PIT tags and visual means, and the difference between the PIT tag and visual escapement estimate at Columbia Basin dams in 2020.

Dam	Escapement Estimate Using Bonneville PIT Tagged Sockeye Salmon	Visual Dam Count	Difference Between Bonneville PIT Tag and Visual Estimates
Bonneville		341,716	
The Dalles	324,617	295,776	9.8%
John Day	314,814	309,959	1.6%
McNary	308,849	284,924	8.4%
Priest Rapids	290,044	291,106	-0.4%
Rock Island	264,141	280,440	-5.8%
Rocky Reach	222,209	249,521	-10.9%
Wells	217,833	226,107	-3.7%
Tumwater	38,429	43,391	-11.4%
Ice Harbor	1,474	2,330	-36.7%
L. Monumental	51	1,257	-95.9%
Little Goose	51	831	-93.9%
Lower Granite	38,429	43,391	-11.4%
Little Goose	51	831	-93.9%
Prosser	3,201	2,549	25.6%
Roza	2,510	4,379	-42.7%

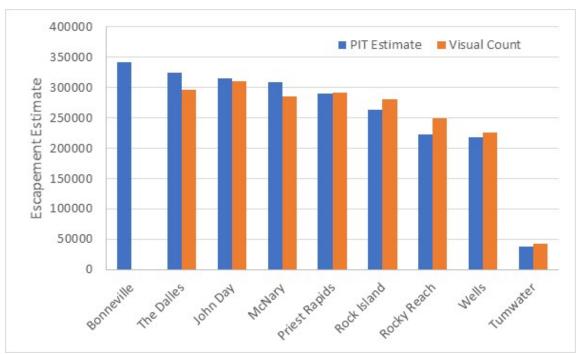


Figure 29. Estimated PIT tag and visual count estimates of escapement at Columbia River and Tumwater dams in 2020.

Sockeye Salmon tagged at Bonneville Dam show a significant decrease in survival to upstream dams over the period of the run in 2020 (Table 47, Figure 30). There was not a significant decrease in survival for Sockeye Salmon tagged as juveniles although sample sizes were lower (Table 47).

Table 47. Sockeye Salmon survival through selected reaches by statistical week as estimated by PIT tag detections in 2020 and the p-value for a linear regression between weekly reach survival and statistical week.

	Survi	val from	Bonnevil	le for So	ckeye				
Statistical	5		agged as		ıt	_	Imon Tagged		
Week at		Bo	nneville D)am	Survival from Bonneville-Priest Rapids				
Bonneville	The	e John Priest Rock			Wenatchee	Okanagan	Rock Island		
Dam	Dalles	Day	McNary	Rapids	Island	(n=83)	(n=164)	(n=78)	
22-23	100.0%	100.0%	100.0%	100.0%	89.8%	NA	100.0%	100.0%	
24	92.9%	88.8%	88.8%	81.6%	71.4%	100.0%	80.0%	71.4%	
25	97.6%	96.2%	95.1%	88.5%	72.7%	66.7%	92.3%	70.0%	
26	94.3%	91.1%	89.4%	83.9%	76.1%	71.0%	88.0%	91.3%	
27	96.1%	93.0%	92.4%	86.4%	78.6%	76.9%	82.0%	85.0%	
28	94.2%	91.7%	88.4%	86.0%	83.5%	56.3%	80.8%	91.7%	
29	91.5%	88.0%	82.2%	75.7%	73.4%	100.0%	20.0%	50.0%	
30	86.0%	82.6%	73.6%	58.7%	56.2%	0.0%	50.0%	100.0%	
31	84.0%	80.0%	56.0%	44.0%	42.0%	50.0%	100.0%	NA	
32-33	72.7%	72.7%	54.5%	45.5%	36.4%	NA	NA	NA	
Composite ¹⁸	95.0%	92.1%	90.4%	84.9%	77.3%	71.0%	81.7%	83.3%	
p-value	<0.01	<0.01	<0.01	<0.01	<0.01	0.14	0.37	0.76	

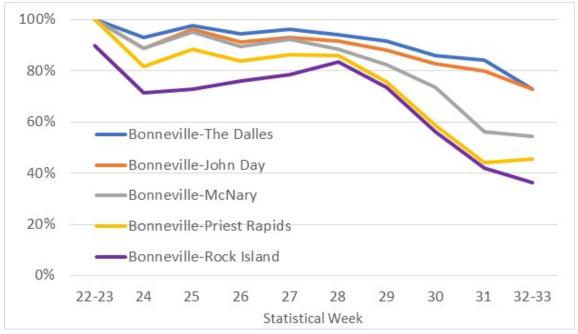


Figure 30. Survival of Sockeye Salmon PIT tagged at Bonneville Dam to The Dalles, John Day, McNary, Priest Rapids, and Rock Island dams by statistical week in 2020.

¹⁸ Composite estimates for Bonneville Dam Sockeye Salmon are weighted by Statistical Week, juvenile estimates are unweighted.

The returning Rock Island juvenile-tagged Sockeye Salmon had highest upstream survival to Priest Rapids Dam¹⁹ (85.0%) followed by adults tagged at Bonneville Dam (84.9%, Table 48). Sockeye Salmon tagged as juveniles in the Wenatchee basin had the highest conversion rate to spawning ground arrays (45.0%) followed by adults tagged at Bonneville Dam (41.1%), juveniles tagged at Rock Island (41.0%) and juveniles tagged in the Okanagan basin (38.1%, Table 48).

Table 48. Survival of Sockeye Salmon groups PIT tagged as juveniles from Bonneville Dam to upstream dams with adults tagged by this study at Bonneville Dam included for comparison in 2020. Yellow shaded cells represent sites that are not on the migration route for the group tagged.

			Percent Survival to Upstream Dam									
Tagging Location	Life Stage at Tagging	# at BON	The Dalles	John Day	McNary	Priest Rapids	Rock Island	Rocky Reach	Wells	Tumwater	Ice Harbor	Conversion Rate BON to PIT Arrays on Spawning Ground (%) ²⁰
Okanagan	Juvenile	164	93.9	87.8	82.9	81.7	73.2	72.0	71.3	0.0	0.0	38.1
Wenatchee	Juvenile	100	91.0	90.0	87.0	83.0	71.0	14.0	10.0	66.0	0.0	45.0
Rock Island	Juvenile	78	100.0	100.0	90.0	85.0	85.0	55.0	55.0	25.0	0.0	41.0
Snake	Juvenile	5	100.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0	20.0
Bonneville	Adult	1848	95.0	92.1	90.4	84.9	77.3	65.0	63.7	11.2	0.4	41.1

Migration Rates and Passage Time

Adult Sockeye Salmon travelled quickly upstream in 2020 with median migration rates between mainstem dams ranging between 30.0 and 56.6 km/day for adults tagged at Bonneville and 29.2 to 55.6 km/day for tagged juveniles returning as adults (Table 49).

Like most previous years, Sockeye Salmon tagged at Bonneville Dam later in the migration traveled significantly faster than those tagged earlier in the migration through the mainstem Columbia River (Table 50). Median travel times between the Okanagan and Wenatchee stocks differed by 0.2 days or less for all dam pairs listed that are in the normal migration corridor for both stocks. The nine

²⁰ Spawning grounds refers to detection at or above OKC in the Okanagan, LWE or WTL in Wenatchee, or RFL in the Snake Basin.

_

¹⁹ Priest Rapids Dam is used in this comparison because it has been the furthest upstream dam with consistently very high rates of PIT tag detection [Table 42] that is passed by both predominant stocks (Okanagan and Wenatchee).

Wenatchee-stock Sockeye Salmon which were detected at Wells Dam had shorter migration times to Rocky Reach and Wells Dam than did Okanagan Sockeye Salmon on their usual migration route.

Table 49. Median Sockeye Salmon migration rates and travel time between dams as estimated by PIT tag detections in 2020.

				Returning Adults			
			Tagged at ville Dam	Tagged as Juveniles			
	Distance	Median Travel Time	Median Migration Rate	Median Travel Time	Median Migration Rate		
Dam Pair	(km)	(days)	(km/day)	(days)	(km/day)		
Bonneville-The Dalles	74	1.8	40.5	1.6	44.3		
The Dalles-John Day	39	0.9	46.4	0.9	48.3		
John Day-McNary	63	2.1	56.6	2.1	55.6		
McNary-Priest Rapids	167	4.9	34.5	5.0	33.9		
Priest Rapids-Rock Island	89	3.0	30.1	3.1	29.2		
Rock Island-Rocky Reach	33	1.0	32.6	1.0	32.6		
Rocky Reach-Wells	65	1.8	36.7	1.9	36.5		
Rock Island-Tumwater	73	9.6	7.2	9.7	7.1		
Bonneville-John Day	113	2.8	41.6	2.6	44.1		
Bonneville-McNary	231	4.9	47.7	4.8	48.1		
Bonneville-Priest Rapids	329	9.9	40.5	10.0	40.3		
Bonneville-Rock Island	487	13.0	37.8	13.4	36.7		
Bonneville-Tumwater	560	24.0	23.3	23.8	23.5		
Bonneville-Wells	585	16.0	37.0	16.4	36.1		

Table 50. Adult Sockeye Salmon median travel time in days between dam pairs by statistical week tagged at Bonneville Dam, the p-value for a linear regression between travel time and statistical week, and mean travel time by stock as estimated using PIT tags in 2020.

Statistical week, and mean travel time by Stock as estimated using FIT tags in 2020.											
Statistical Week at	BON	BON	BON	BON	BON	BON	BON	BON	BON	WEL	RIA
Bonneville	to	to	to	to	to	to	to	to	to	to	to
Dam	TDA	JDA	MCN	PRA	RIA	TUF	RRF	WEA	ZSL	ZSL	TUF
23	1.9	3.1	6.9	15.1	20.4	0.0	21.9	24.1	NA	NA	NA
24	1.9	3.1	5.6	13.8	17.3	38.6	19.0	21.1	NA	NA	17.7
25	1.8	2.9	5.2	11.7	16.4	31.4	17.7	19.8	89.8	59.6	14.9
26	1.8	2.8	4.9	11.0	14.2	26.0	15.0	17.0	69.4	44.7	10.7
27	1.8	2.8	4.8	9.0	11.8	20.9	12.7	14.7	60.9	45.2	8.7
28	1.7	2.7	4.7	8.7	11.9	21.0	12.0	13.9	40.2	26.1	7.4
29	1.7	2.6	4.7	8.6	11.0	20.2	11.9	13.7	42.6	28.5	8.1
30	1.7	2.7	4.8	8.8	11.7	22.6	12.8	14.7	26.7	12.2	8.3
31	1.5	2.3	4.5	8.1	10.7	23.7	12.0	14.1	30.0	8.7	12.9
32	1.6	2.8	4.3	10.2	13.3	0.0	15.1	17.0	25.2	10.2	NA
p-value	<0.01	0.01	<0.01	<0.01	<0.01	0.03	0.01	0.01	<0.01	<0.01	0.12
Stock											
Okanagan	1.8	2.8	4.9	9.8	13.0	NA	13.9	16.0	43.0	29.6	NA
Wenatchee	1.8	2.8	4.9	10.0	13.0	23.8	13.1	15.2	NA	NA	9.6

The median passage time at a dam for Sockeye Salmon tagged at Bonneville Dam in 2020 was 9.4 with the greatest median passage time at Tumwater Dam, likely due to trapping activities at that site.

Table 51. Sockeye Salmon median passage time (from time of first detection at a dam to last detection at a dam) and the percentage of Sockeye Salmon taking greater than 12

hours between first detection and last detection at upstream dams in 2020.

etection and last		•	
		Median Passage	%>12
Dam	N	(Minutes)	Hours
Bonneville	1730	24.5	9.1%
The Dalles	1589	0.1	2.1%
John Day	1494	0.3	5.0%
McNary	1466	0.2	1.0%
Priest Rapids	1393	9.4	3.4%
Rock Island	1235	23.6	2.2%
Rocky Reach	1076	6.2	2.6%
Wells	1046	7.6	7.6%
Zosel	188	0.7	2.1%
Tumwater	166	48.0	18.1%
Ice Harbor	6	8.3	16.7%
Lower			
Monumental	1	0.2	0.0%
Little Goose	1	0.1	0.0%
Lower Granite	0	NA	NA
Weighted Mean			
(by detection		9.4	4.4%
number)			

Night Passage

Okanagan Sockeye Salmon tagged at Bonneville Dam passed PIT tag antennas at night (2000-0400 hours) at a higher rate than Wenatchee Sockeye Salmon at 6 out of 9 dams where Sockeye Salmon from both stocks were detected (Table 52). Adults tagged at Bonneville passed dams at night at a higher rate than Sockeye Salmon tagged as juveniles at 6 out of 10 dams.

Table 52. Estimated Sockeye Salmon night passage (2000-0400) by stock at Columbia River, Zosel, and Tumwater dams in 2020.

	Adults Tagg	le Dam	Sockeye Salmon		
Dam	All Adults	Okanagan	Wenatchee	Tagged as Juveniles	
Bonneville	0.6%	0.7%	0.0%	2.2%	
The Dalles	8.1%	9.0%	3.9%	7.5%	
John Day	4.0%	4.9%	0.5%	2.3%	
McNary	7.2%	8.3%	0.9%	3.7%	
Priest Rapids	3.4%	3.9%	1.0%	4.3%	
Rock Island	4.3%	4.2%	4.5%	3.9%	
Rocky Reach	7.2%	7.3%	4.5%	9.7%	
Wells	11.2%	11.0%	33.3%	8.2%	
Tumwater	3.6%	NA	3.7%	3.8%	
Zosel	27.1%	27.1%	NA	11.1%	

Fallback

Fallback rates at mainstem Columbia River dams for adults tagged at Bonneville Dam in 2020 ranged from 0.3% at McNary Dam to 6.0% at John Day Dam while among all 347 returning Sockeye Salmon tagged as juveniles, the range was from 0.0% at Rock Island Dam to 9.1% at Rocky Reach Dam (Table 53).

Of the 295 Sockeye Salmon tagged as adults by this project in 2020 which fell back over at least one dam, 13 fell back over two dams 2 fell back over three dams, and 1 fell back over four dams (Table 54). Among Sockeye Salmon tagged as juveniles, the mean number of fallback events per Sockeye Salmon ranged from 0.16 for Sockeye Salmon tagged in the Okanagan (n-164) to 0.60 for those tagged in the Snake Basin (n=5) compared to 0.19 for adult-tagged Sockeye Salmon in our Bonneville study (Table 54). Figures showing examples of the movements of the Sockeye with between three and five fallbacks are in Appendix C (Figures C30 and C31).

Table 53. Estimated minimum fallback rates for Sockeye Salmon at dams in 2020²¹. NA indicates Sockeye Salmon were not detected at a dam outside the range of the particular stock. The sample size (n) is the number of tagged Sockeye Salmon detected moving

upstream past Bonneville Dam.

	Tagged as Adults	I ADDED AS JUVENUES DV LADDING LOCATION												
Dam	Bonneville AFF (n=1696)	Okanagan Basin (n=164	Rock Island Dam (n=78)	Snake Basin (n=5)	Wenatchee Basin (n=100)	Total (n=347)								
Bonneville	0.4%	0.6%	1.3%	0.0%	0.0%	0.6%								
The Dalles	3.0%	1.9%	1.4%	0.0%	1.1%	1.5%								
John Day	6.0%	4.9%	8.6%	20.0%	6.7%	6.5%								
McNary	0.3%	1.5%	1.4%	0.0%	0.0%	1.0%								
Priest Rapids	2.3%	3.7%	0.0%	NA	0.0%	1.8%								
Rock Island	1.1%	0.0%	0.0%	NA	0.0%	0.0%								
Rocky Reach	5.5%	1.7%	6.8%	NA	78.6%	9.1%								
Wells	2.3%	1.7%	2.3%	NA	100.0%	7.6%								
Tumwater	1.2%	NA	7.7%	NA	7.6%	7.6%								
Zosel	0.3%	5.9%	0.0%	NA	NA	4.0%								
Skaha	3.3%	5.0%	10.0%	NA	NA	6.7%								
Ice Harbor	33.3%	NA	NA	NA	NA	NA								
Lower Monumental	0.0%	0.0%	0.0%	20.0%	NA	20.0%								
Little Goose	0.0%	0.0%	0.0%	20.0%	NA	20.0%								
Lower Granite	NA	NA	NA	0.0%	NA	0.6%								

-

²¹ Does not include Sockeye Salmon that may have fallen back over a dam and were not subsequently detected.

Table 54. Number of fallback events by tag group for returning Sockeye Salmon tagged as iuveniles and Sockeye Salmon included in our Bonneville adult tagging study in 2020.

juveniles and Sockeye Saim		our Boilliev	ille addit tagg	ing study i	11 2020.					
	Sockeye Salmon Tagged as Adults	Sockeye Salmon Tagged as Juveniles by Tagging Location								
Fallback Events	Bonneville Dam AFF	Okanagan Basin	Rock Island Dam	Snake Basin	Wenatchee Basin					
1	279	27	14	3	26					
2	13	0	1	0	7					
3	2	0	0	0	0					
≥4	1	0	0	0	0					
Number of Sockeye Salmon falling back at least once	295	27	15	3	33					
% of Sockeye Salmon with at least one fallback event	16.5%	16.5%	19.2%	60.0%	33.3%					
Total fallback events	315	27	16	3	40					
Number of Sockeye Salmon detected at or upstream of Bonneville Dam	1696	164	78	5	100					
Fallbacks events per Sockeye Salmon	0.19	0.16	0.21	0.60	0.40					

Straying

The Sockeye stray rate estimated by this project is 1.6% (Table 55). Among the 13 Sockeye strays in Table 55, 8 were from the Yakima Sockeye reintroduction program and 5 Wenatchee or Okanagan Sockeye were last detected in the Entiat or Methow rivers.

A reintroduction program at Cle Elum Lake in the Yakima Basin complicates stray analysis. Some Yakima stock Sockeye can be identified using PBT, but those are rare. Sockeye not identified by PBT are classified using GSI, which cannot differentiate between a Wenatchee or Okanagan stock Sockeye and the offspring of Wenatchee or Okanagan stock Sockeye Salmon whose parents spawned in the Yakima Basin. It is likely that the three "Okanagan" stock Sockeye Salmon last detected in the Yakima River were actually offspring of Okanagan stock Sockeye Salmon which spawned upstream of Cle Elum Lake.

Table 55. Showing final-PIT-fate categories by stock as determined using Genetics Stock Identification for fish tagged in 2020. Fate categories are categorized by color. Grey is neutral (meaning last detected on route to expected destinations), green is on target (meaning last detected at their expected destination), yellow is putative overshoot meaning a fish last detected in an area adjacent to its expected destination, and red is putative stray meaning a fish was last detected in tributaries or the mainstem outside their normal route to their expected destination. Stray rates are also tabulated.

	Boni	neville	Dam	The I	Dalles	Joh	n Day	Dam	Mo	Nary	Dam		Yaki	ma Ba	sin					١	Venat	hee E	3asin_		Ro	cky Rea	ach Dam	Entia	t Basin			M	ethow	Basin			Oka	anaga	n Basiı	n					Totals	<u> </u>		
Genetic Stock Identification Classification	OR Shore Ladder	Lower WA Shore Ladder	Upper WA Shore Ladder	East Shore Ladder	West Shore Ladder	Juvenile Bypass	Oregon Shore	WA Shore	Oregon Shore	WA Shore	Juvenile Bypass	Ice Harbor Dam	Prosser Dam	Sunnyside Diversion	Roza Dam	Priest Rapids Harchery	Priest Rapids Dam	Rock Island Dam	Lower Wenatchee	Icicle Creek	Tuwater Dam	Upper Wenatchee	Little Wenatchee	White River	AVIILE NIVEL	Rocky Reach Dam	Rocky Reach Bypass	Lower Entiat River	Upper Entiat river	Wells Hatchery	Wells Ladders	Lower Methow River	Methow River-Carlton	Twisp River	Iower Okanagan Biver	Zosel Dam	Okanagan River-liver	McIntyre Dam	Skaha Dam	Okanagan River-Penticton	kanagan River-Pen	Total	Neutral	On Target	Putative Stray	Putative Overshoot	Likely Cle Elum Program	% Putative Stray/On Target
Columbia RKM	234	234	234	308	308	347	347	347	7 470	470	470	522	539	539	539	635	639	730	754	75	4 75	4 75	54 75	54 7	754	763	763	778	3 778	82	9 83	0 84	.3 84	13 84	13 85	85	85	8 85	58 858	858	3 858	j						
Last Site	BO1	воз	BO4	TD1	TD2	JDJ	JO1	JO2	MC1	1 MC2	MCJ	ICH	PRO	SUN F	ROZ	PRH	PRA	RIA	LWE	ICL	TUF	UW	/E LWI	N W	TL	RRF	RRJ	EHL	ENA	WE	H WEA	LMI	R MR	c TW	R OK	(L ZS	L OK	СОКІ	VI SKA	4 OKF	ОКР	Total						
Okanagan	2	8	71	39	5	1	. 25	16	5 25	5 41	. 1			1	2		92	26								13	2	1	L		5 34	9	1		5	54 5	54 37	1	4 2	7 60	60	1346	711	630	2	0	3	0.3%
Wenatchee	3	2	27	3		1	. 6	5 4	1 8	3 7							24	7	4	ļ.	1	7 4	42 1	L5	99	1	1		1	L				1	1							260	87	168	3	2	0	1.8%
Snake			1				2	2																																		3	; 3	3 0	0	0	0	NA
Yakima			1	1			1		5	5 7		4	3		10	1	2		1						1	1										1						39	18	13	8	0	0	38.1%
Total	5	10	100	43	5	2	34	20	38	55	1	4	3	1	12	1	118	33	5	;	1	7 4	42 1	L5 1	100	15	3	1	1		5 34	9	1	1	1 5	55 5	54 37	1	4 27	7 60) 60	1648	819	811	. 13	2	3	1.6%

DISCUSSION

In 2020, this project tracked a total of 3,272 Chinook, 1,474 steelhead, and 1,730 Sockeye (Table 56) upstream to estimate parameters such as upstream escapement, age composition, length composition, and migration rates at and between mainstem dams and other tributary interrogation sites. The year 2020 marked the 15^h year of Sockeye Salmon PIT tagging, the 14th year of Chinook Salmon PIT tagging and the 12th year of steelhead PIT tagging at Bonneville Dam. Over this time, the number of PIT tag detection sites in the Columbia Basin has continually increased, increasing our understanding about the movement of tagged salmonids.

Table 56. Total number of Chinook and Sockeye salmon and steelhead PIT tags tracked by

year (in	<u>cludes rec</u>	aptures of p	previously	PIT tagge	<u>d fish) 200</u>	9-2020.									
		Total Tr	acked	Percent of Run Tracked											
Year	Chinook	Steelhead	Sockeye	Total	Chinook	Steelhead	Sockeye	Total							
2009	2,968	2,485	838	6,291	0.42%	0.41%	0.47%	0.42%							
2010	2,579	1,741	913	5,233	0.29%	0.42%	0.24%	0.31%							
2011	3,253	1,377	763	5,393	0.38%	0.37%	0.41%	0.38%							
2012	3,438	1,451	1,601	6,496	0.50%	0.62%	0.31%	0.45%							
2013	3,406	1,276	772	5,454	0.26%	0.55%	0.42%	0.32%							
2014	3,869	1,717	1,400	6,986	0.27%	0.63%	0.27%	0.33%							
2015	3,563	898	901	5,362	0.25%	0.33%	0.18%	0.24%							
2016	3,396	1,610	1,653	6,659	0.44%	0.86%	0.48%	0.51%							
2017	2,805	836	1,079	4,720	0.69%	0.71%	1.23%	0.87%							
2018	3,178	893	1,848	5,919	0.95%	0.87%	0.95%	0.94%							
2019	3,483	820	972	5,275	0.79%	1.06%	1.54%	0.92%							
2020	3,272	1,474	1,730	6,475	0.54%	1.29%	0.51%	0.61%							
Mean	3,267	1,382	1,206	5,855	0.48%	0.68%	0.58%	0.52%							
All Years	39,210	16,578	14,470	70,263											

In past years, this study has looked closely at the definition of spring and summer Chinook, however we were not allowed to sample most of the spring Chinook run in 2020, stopping a dataset on age and length-at-age composition which had been collected every year since 1987.

Tules, which are mature, very dark colored fall Chinook primarily bound for lower Columbia River hatcheries and tributaries, have not normally been included

in our sample due to the fact that scales are very difficult to remove for aging and aging is difficult, if not impossible due to the extreme resorption of the outer part of the scales. However, in 2020 (as in 2019 – 150 sampled), we did sample 122 Tules between weeks 34 and 40. Of these, 102 were last detected at Bonneville Dam (101 of which were at the upper antennas prior to entering Bonneville Pool), 11 were last detected at Spring Creek Hatchery, with 3 at Little White Salmon Hatchery, 2 at McNary Dam, and 1 each at Hood River mouth, The Dalles Dam, John Day Dam, and Lower Tucannon River (Figure C16 in Appendix C).

PBT classification for Tules sampled in 2020 was 72 Spring Creek Hatchery, 3 Little White Salmon Hatchery, and 1 each from Lyons Ferry, Nez Perce, and Priest Rapids hatcheries. These latter three fish were likely extremely mature Chinook which had a Tule coloration and not of the Tule race.

REFERENCES

- Busby, P.J. T. C. Wainwright, G.J. Bryant, L.J. Lierheimer, R.S. Waples, R. W. Waknitz, and I.V. Lagomarsino. 1996. Status review of West Coast steelhead from Washington, Idaho, Oregon, and California. NOAA Technical Memorandum NMFS-NWFSC-27. http://www.nwfsc.noaa.gov/publications/techmemos/tm27.
- CBFWA (Columbia Basin Fish and Wildlife Authority PIT Tag Steering Committee). 1999. PIT tag marking procedures manual. CBFWA. Portland. 26p.
- FPC (Fish Passage Center). 2020 and 2021. Adult fish counts online at www.fpc.org.
- Fryer, J.K. 2009. Use of PIT tags to determine upstream migratory timing and survival of Columbia Basin Sockeye Salmon in 2008. Columbia River Inter-Tribal Fish Commission Technical Report 09-03. 43p. https://critfc.org/reports/use-of-pit-tags-to-determine-upstream-migratory-timing-and-survival-of-columbia-basin-sockeye-salmon-in-2008/.
- Fryer, J. K., J. Mainord, J. Whiteaker, and D. Kelsey. 2011. Upstream Migration Timing of Columbia Basin Chinook, Sockeye Salmon and Steelhead in 2009. Columbia River Inter-Tribal Fish Commission Technical Report 11-10 for U.S. Dept. of Energy Bonneville Power Administration Project 2008-518-00. 93p. https://critfc.org/reports/upstream-migration-timing-of-columbia-basin-chinook-Sockeye Salmon-salmon-and-steelhead-in-2009/.
- Fryer, J.K., H. Wright, S. Folks, R. Bussanich, K. Hyatt, M. Stockwell and J. Miller. 2016. Limiting Factors of the Abundance of Okanogan and Wenatchee Sockeye Salmon in 2014. Columbia River Inter-Tribal Fish Commission Technical Report 16-02 for U.S. Dept. of Energy Bonneville Power Administration Report Project 2008-503-00. 147p. https://critfc.org/reports/limiting-factors-of-the-abundance-of-okanagan-and-wenatchee-sockeye-salmon-in-2014/.
- Fryer, J.K., D. Kelsey, H. Wright, S. Folks, R. Bussanich, K.D. Hyatt, D. Selbie, and M.M. Stockwell. 2021. Studies into Factors Limiting the Abundance of Okanogan and Wenatchee Sockeye Salmon in 2019. Columbia River Inter-Tribal Fish Commission Technical Report 21-01 for U.S. Dept. of Energy Bonneville Power Administration Project 2008-503-00. 217p. https://critfc.org/reports/studies-into-factors-limiting-the-abundance-of-okanagan-and-wenatchee-sockeye-salmon-in-2019/.

- Hatch, D. et al. Multiple Years. Annual Reports on the Kelt Reconditioning and Reproductive Success. Columbia River Inter-Tribal Fish Commission Technical Report. http://www.critfc.org/fish-and-watersheds/fishery-science/scientific-reports/
- Kelsey D., J. Mainord, J. Whiteaker, and J.K. Fryer. 2011. Age and length composition of Columbia Basin Chinook and Sockeye salmon and steelhead at Bonneville Dam in 2009. Columbia River Inter-Tribal Fish Commission Technical Report 11-08 for U.S. Dept. of Energy Bonneville Power Administration Project 2008-518-00. 41p. https://critfc.org/reports/age-and-length-composition-of-columbia-basin-chinook-and-sockeye-salmon-and-steelhead-at-bonneville-dam-in-2009/.
- Koo, T.S.Y. 1962. Age designation in salmon. Pages 37-48 in T.S.Y. Koo (editor). Studies of Alaska Red Salmon. University of Washington Press, Seattle, Washington.
- Whiteaker J., and J.K. Fryer. 2008. Age and length composition of Columbia Basin Chinook and Sockeye salmon and steelhead at Bonneville Dam in 2007. Columbia River Inter-Tribal Fish Commission Technical Report 08-04. 45p. https://critfc.org/reports/age-and-length-composition-of-columbia-basin-chinook-and-sockeye-salmon-and-steelhead-at-bonneville-dam-in-2007-2/.

APPENDIX A

Section on Adult Trap Protocols out of the 2019 Fish Passage Plan for Bonneville Adult Fish Facility. Full document can be found at http://pweb.crohms.org/tmt/documents/fpp/2019/final/FPP19_AppG.pdf.

1. BONNEVILLE DAM ADULT FISH FACILITY

The following protocols will be implemented by agencies conducting research in the Bonneville Dam second powerhouse Adult Fish Facility (AFF). These protocols were coordinated with fish agencies and tribes through the Fish Passage Operation and Maintenance Coordination Team (FPOM). The purpose of these protocols is to provide measures to limit mortality resulting from stress when handling fish.

1.1. General Facility Protocols.

- **1.1.1.** Users must have appropriate documentation for conducting research at the dam (see *Guide for Researchers at Bonneville Dam*). This includes valid state and federal permits that cover all listed species passing the project during the trapping period. Users shall comply with all fish handling conditions in the permits. *If permit conditions are more restrictive than the following protocols, users must follow permit conditions*.
- **1.1.2.** The Corps reserves the right to terminate trapping operations at any time.
- **1.1.3.** Users will be trained in the proper operation of the AFF to insure fish and personnel safety. Users may request training through the Project Biologists.
- **1.1.4.** Bridge crane certification is required prior to operating the overhead crane. Training will not be provided by the Corps of Engineers.
- **1.1.5.** Hard hats, long pants or raingear, steel-toed shoes or rubber boots are to be worn at all times. Shorts, tennis shoes, or sandals will not be permitted in the lab.
- **1.1.6.** Water temperatures should be observed upon arrival and periodically during the day.
- **1.1.7.** Personnel conducting research are required to be present in the AFF to divert desired fish into the anesthetic tank using the flume swing gates. While the AFF is in operation, flumes shall be open and a researcher must be on-site.
- **1.1.8.** Undesired fish will be bypassed to the return pool.
- **1.1.9.** Researchers shall perform no maintenance on Corps owned/installed equipment. Nets may be mended as necessary.
- **1.1.10.** Qualified users may lower the main ladder picket leads and downstream exit bulkhead when they arrive, and must raise the picket leads when they are completed for the day. The downstream exit bulkhead may be left down when shad and lamprey are attempting to pass.
- **1.1.11.** Users will be permitted to operate valves 9 and 10 to control flow down the flumes at their discretion and to operate the raw water booster pump. Users may operate valve 12 to provide flow in the holding pool and valve 15 to drain water at the return pool.
- **1.1.12.** Users must use a sanctuary net large enough to safely handle the largest fish passing the project during the trapping period.

1.1.13. Fish greater than 100 cm forklength may be diverted into the main anesthetic tank or returned to the ladder untouched. These fish will not be diverted into any auxiliary anesthetic tanks

1.2. Notification & Documentation.

- **1.2.1.** Users will notify the control room when they set up and close down the lab.
- **1.2.2.** Users will record the times picket leads are lowered and raised and which agency they are representing on the sheet provided by the project biologists.
- **1.2.3.** Lamprey may be held up to 48 hours in the AFF. Researchers will notify Project Fisheries and the Control Room whenever lamprey are held.
- **1.2.4.** Any and all mortalities must be immediately reported to a Project Biologist. The Project Biologist will examine the mortality and take any photos. The researcher shall give a detailed report including:
 - (a) Species;
 - (b) Origin;
 - (c) Length;
 - (d) Weight;
 - (e) Marks and injuries;
 - **(f)** Cause and time of death;
 - **(g)** Future preventative measures.
- **1.2.5.** All mortalities are included in Project Fisheries weekly reports submitted to FPOM.

1.3. <u>Trapping Protocols – Ladder Water Temperatures <70°F.</u>

- **1.3.1.** There will be no start time restriction for trapping operations.
- **1.3.2.** There will be no more than 4 Chinook, or 4 steelhead, or 6 sockeye, or any combination of 4 adult salmonids allowed in the anesthetic tank at any one time. This assumes that users can effectively track the length of time fish stay in the anesthetic tank.
- **1.3.3.** There will be no more than two adult fish in any one observation tank at any one time. The brail pool is the primary and preferred recovery area.
 - **1.3.3.1.** Observation tanks will primarily be used for fish in "distress", defined as fish that have sustained injury during the trapping and sampling process; fish that have a previous injury (e.g., fish in "fair" or "poor" condition upon trapping due to marine mammal injuries or similar) fish that are showing symptoms of heavy sedation (e.g., diminishing gill movement, reduced gasp response when out of water).

- **1.3.3.2.** Fish will be released from the observation tanks when they are in the state of "*Partial Equilibrium*," defined as: gilling normally, making weak tailing movements, cannot swim upright and swims off course without avoiding obstacles; fish will not strongly try to break free of handlers.
- **1.3.3.3.** All fish in an observation tank must be continuously observed by a dedicated observer to ensure adult fish do not recover beyond partial equilibrium prior to return to the brail pool. No lid or restraining device shall be installed on top of the observation tanks.
- **1.3.3.4.** Observation tanks may be used for study objectives such as monitoring recovery time from anesthetic, if approved by FPOM and USACE.
- **1.3.4.** Anesthetic tank water will be replaced at least two times per day. Water temperatures in the anesthetic tank will be maintained within 2°F of the fish ladder water temperature. *If* anesthetic tank water temperature exceeds 70°F, criteria in section 4 will go into effect.
- **1.3.5.** Water in the observation tanks will be running continuously to allow a constant exchange of water through the tank.
- **1.3.6.** Personnel shall ensure fish are sampled as quickly as possible. It is recommended that it take no longer than 25 minutes to transition the fish from entry into the anesthetic tank to release back into the return ladder or transportation tank.
- **1.3.7.** Personnel shall ensure that fish are fully recovered from anesthetization prior to release into the return ladder. Fish may volitionally leave the brail pool when they are ready.
- **1.3.8.** When trapping is completed for the day, users will properly shut down the lab.
- **1.3.9.** Four picket leads will be allowed during trap operations for up to four hours. After all picketed leads are raised, fish already in the AFF can be sampled for an additional one hour. The picketed lead operations are as follows¹:
 - (a) 0–6,000: All 4 picket leads can be lowered for 4 continuous hours.
 - **(b) 6,000–12,000:** All 4 picket leads down for 3 hours. At the 3rd hour, raise at least 1 picket lead for ½ hour, and then continue sampling for additional 1 hour.
 - (c) 12,000–25,000: All 4 picket leads down for 2 hours. At the 2nd hour, raise at least 2 picket leads for ½ hour, and then continue sampling for an additional 2 hours.
 - (d) **25,000–35,000**: Two picket leads down for four hours.
 - (e) > 35,000: No picket leads down.
- **1.3.10.** Researchers will also be required to monitor the ladder every hour to ensure there is no crowding. If evidence of crowding is occurring at least two picket leads will be raised.

¹ All counts are of adult salmonids (including jacks) as enumerated the previous day at the Washington Shore count station. Assumes 4 shad = 1 salmonid (e.g., 6,000 salmonids + 4,000 shad = 7,000 total).

G-3

_

- **1.3.11.** Project Fisheries will notify FPOM as soon as Weir 37 violates FPP criteria.
- **1.3.12.** Project biologists retain the authority to raise additional picket leads depending on fish densities and ladder conditions.

1.4. <u>Trapping Protocols – Ladder Water Temperatures >= 70°F.</u>

- **1.4.1.** Trapping will not occur when fish ladder water temperatures meet or exceed 70°F as measured in the brail pool. The only exception is for *US v Oregon* requirements and for nighttime lamprey trapping. Nighttime is defined as official sunset to sunrise.
 - **1.4.1.1.** Project Biologists will use the Corps temperature probe reading as the official temperature.
 - **1.4.1.2.** Temperatures are both instantaneous readings and 0000–2400 daily averages. Researchers can review daily average, minimum and maximum temperatures from www.nwd-wc.usace.army.mil/tmt/documents/ops/temp/daily_by_basin.html to determine if the trap is within temperature criteria prior to traveling to BON. Instantaneous temperatures will be used to determine if trapping operations will continue for the day.
 - **1.4.1.3.** Project biologists will collect temperature data weekly from the data logger in the exit ladder. Daily checks may be requested when temperatures approach 70°F.
- **1.4.2.** At water temperatures of 70–72°F, sampling will be permitted as defined below for up to four days per week from 0600-1030 hours to allow for *U.S. v Oregon* requirements. This operation will remain in effect until daily average water temperature drops to \leq 69.9°F. All sampling will cease when temperature reaches 72°F. No sampling may resume until daily average water temperature drops to \leq 71.9°F. An exception is that nighttime lamprey trapping will be permitted up to 73.9°F for tagging and transport purposes. All nighttime trapping for lamprey will cease when temperatures reach 74°F.
- **1.4.3.** Researchers may continue to work through fish in the holding pool for one hour after picket leads have been raised.
- **1.4.4.** Project Fisheries will notify FPOM as soon as Weir 37 consistently violates FPP criteria.
- **1.4.5.** The density criteria for picket lead operations will be altered and the operations will be as follows (density criteria and adult ladder monitoring outlined above in **1.3.9** also apply¹):
 - (a) 0–3,000: All 4 picket leads can be lowered for 4 continuous hours.
 - **(b)** 3,000–6,000: All 4 picket leads down for 3 hours. At the 3rd hour, raise at least 1 picket lead for ½ hour and then continue sampling for an additional 1 hour.
 - (c) 6,000–9,000: All 4 picket leads down for 2 hours. At the 2nd hour, raise at least 1 picket lead for ½ hour and then continue sampling for an additional 2 hours.
 - (d) 9,000–18,000: 2 leads down for 4 hours. All picket leads raised by 10:30 am.
 - (e) > 18,000: No picket leads down.

- **1.4.6.** There will be no more than 3 adult Chinook or steelhead or 4 sockeye in the anesthetic tank at a time. A combination of salmonids is allowed, with the maximum of either 2 Chinook or steelhead and 1 sockeye, or 1 Chinook or steelhead and 2 sockeye. This assumes users can effectively track the length of time fish stay in the anesthetic tank.
- **1.4.7.** The brail pool is the primary and preferred recovery pool.
- **1.4.8.** The observation tanks will be used for fish in distress under guidelines established in 3.3.1 through 3.3.4.
- **1.4.9.** If used, water in the observation tanks will be running continuously allowing a constant exchange of water through the tank.
- **1.4.10.** Assure oxygen levels are maintained at saturation in the anesthetic and recovery tanks. There will be no depression in oxygen levels in the anesthetic or recovery tanks. To assure this, water in the anesthetic tank will be replaced at least every three hours.
- **1.4.11.** Maintain the anesthetic and recovery tank water temperatures 1-2°F lower than the ladder water temperature. If ice is used to cool the anesthetic or recovery tank water, the ice should be from river water or from an un-chlorinated water source and should be added in individual sealed containers. Do not exceed a 2°F difference between the anesthetic or recovery tank water and fish ladder water.
- **1.4.12.** Personnel shall ensure fish are sampled as quickly as possible. It is recommended that it take no longer than 25 minutes to transition the fish from entry into the anesthetic tank to release back into the return ladder or transportation tank.
- **1.4.13.** Personnel shall ensure fish are fully recovered from anesthetization prior to release. Fish may volitionally leave the brail pool when they are ready.
- **1.4.14.** Project biologists retain the authority to raise additional picket leads depending on fish densities and ladder conditions.

1.5. Winter Trapping Protocols (December 1 – March 14).

The purpose of these protocols is to provide measures to limit passage delay and stress from overcrowding in the brail pool. Personnel conducting research during this time are not required to be present in the AFF. Users are allowed to activate the flume swing gates to divert all fish into the brail pool.

- **1.5.1.** Fish will not be permitted to remain in the brail pool longer than 24 hours. It is recommended that handling of fish occurs daily by 1800 hours. This assures that if fish are sampled at the end of the day, most of the fish captured are only held from the morning until afternoon since passage at night is minimal, thus reducing delay.
- **1.5.2.** During sampling, the brail pool should be raised and one adult salmonid netted, via a sanctuary net, and placed into the anesthetic tank at a time. After removing fish from the brail pool into the anesthetic tank, the brail pool will be lowered back to its full depth.

- **1.5.3.** There will be no more than three adult salmonids in the anesthetic tank at a time. This assumes users can effectively track the length of time fish are in the anesthetic tank.
- **1.5.4.** There will be no more than two adult salmonids in the recovery tank at a time.
- **1.5.5.** Water in the recovery tank will be running continuously, allowing a constant exchange of water through the tank.
- **1.5.6.** Personnel shall ensure fish are sampled as quickly as possible. It is recommended that it take no longer than 25 minutes to transition the fish from entry into the anesthetic tank to release back into the return ladder or transportation tank.
- **1.5.7.** Personnel shall ensure fish are fully recovered from anesthesia prior to release.
- **1.5.8.** If daily sampling is not to occur within 24 hours, the main ladder picket leads and downstream exit gate will be raised. The lab will be properly returned to bypass mode.

APPENDIX B

Email threads on the anesthetic water disposal and sampling loss between the Corps of Engineers and CRITFC.

From: Derugin, Andrew G CIV (USA) < Andrew.G. Derugin@usace.army.mil>

Sent: Wednesday, January 29, 2020 9:58 AM

To: John Whiteaker < whij@critfc.org>

Subject: Bon AFF

Hi John,

We're moving forward with the metalworks fixes in our AFF. The brail pool will be operational, and I'm waiting to find out when the rest of the replacement parts will arrive.

What we haven't been able to figure out what we will be doing with the sample water with aqui-s. Project environmental stakk have new discharge permits coming through for the dam and that is not on them. Our drainage system from the AFF to the treatment plant uses small ~1" pipes, so I'm assuming that would slow you guys down way too much. Another option is pumping it outside to a tank on a truck that could then be properly disposed of. Either way, we should talk about this soon.

V/r,

Andrew Derugin
Fish Biologist & Research Coordinator
Bonneville Lock & Dam
U.S. Army Corps of Engineers
o: 541.374.4020

m: 503.278.2376

From: Derugin, Andrew G CIV (USA) < Andrew.G.Derugin@usace.army.mil>

Sent: Monday, February 24, 2020 2:46 PM To: John Whiteaker < whij@critfc.org>

Subject: RE: 2020 Bonneville AFF research pack

Hi John,

Just a heads up, the research request packet only needs to go to myself and Erin Kovalchuk. She posts it on the website, I do the processing. Tammy doesn't actually have any work in it, she just forwards it to Erin.

-Any ideas about the Aqui-s discharge?

V/r,

Andrew Derugin
Fish Biologist & Research Coordinator
Bonneville Lock & Dam
U.S. Army Corps of Engineers
o: 541.374.3879
m: 503.278.2376

----Original Message-----

From: John Whiteaker [mailto:whij@critfc.org]

Sent: Friday, February 21, 2020 9:13 AM

To: Mackey, Tammy M CIV USARMY CENWP (USA) < Tammy. M. Mackey@usace.army.mil>

Cc: Derugin, Andrew G CIV (USA) < Andrew.G. Derugin@usace.army.mil>

Subject: [Non-DoD Source] 2020 Bonneville AFF research pack

Hi Tammy,

I have included copies of our request to access the Bonneville Dam AFF for the 2020 sampling season. Our ESA coverage will continue under the Harvest BiOp and I will send a copy of our Yakama Nation sampling permit to Andrew when it arrives. Let me know if you need anything else.

John Whiteaker
Fishery Scientist
Columbia River Inter-Tribal Fish Commission
700 NE Multnomah St., Suite 1200
Portland OR. 97232
(503) 238-3562

From: John Whiteaker

Sent: Wednesday, March 11, 2020 2:10 PM

To: 'Derugin, Andrew G CIV (USA)' < Andrew.G. Derugin@usace.army.mil>; 'Hausmann, Benjamin J CIV

USARMY CENWP (USA)' < Benjamin J. Hausmann@usace.army.mil>

Subject: AquiS disposal update.

Hi Ben and Andrew,

It turns out the Yakama Nation only has a cooperative agreement with the state of Washington for collection permits. I'm told that they have to go through the Department of Ecology for discharge permits but have verbal clearance to discharge MS222 which doesn't help us.

I contacted Carey Cholski who is the SW Region Permit Coordinator and she didn't think disposing AquiS directly into the river could be done without a permit and stated that the preferred method would be to dispose anesthetic water to the ground, or septic/sewer system. She also wasn't sure about jurisdiction with us being Tribal and the facility being federal. I requested her contact at the federal EPA to follow up.

As a participant of the AquiS INAD through the USFWS, we are given a study protocol (attached) and section XI. Treatment Schedules discusses disposal as follows:

E. Disposition of anesthetic solution

If at all possible, discharge of anesthetic solution remaining in the treatment containers following completion of treatment should be to the ground. If ground discharge is not possible, anesthetic solution may be released/mixed with facility effluent or released directly into public surface water. In situations where minimal dilution of anesthetic solution occurs prior to release to public surface waters, a pulsed-release of anesthetic solution should be employed to minimize discharge levels.

I will continue to follow up on this until we can work out a solution.

John Whiteaker Fishery Scientist Columbia River Inter-Tribal Fish Commission 700 NE Multnomah St., Suite 1200 Portland OR. 97232 (503) 238-3562 From: Derugin, Andrew G CIV (USA) < Andrew.G. Derugin@usace.army.mil>

Sent: Wednesday, March 11, 2020 1:50 PM

To: John Whiteaker < whij @critfc.org>; Mcbain, Melissa A CIV (USA)

<Melissa.A.Mcbain@usace.army.mil>

Subject: AFF discharge

John-this is Melissa, our environmental compliance coordinator

Missy- this is John, he leads the CRITFC sampling effort in our AFF and has some questions about discharge permitting

V/r,

Andrew Derugin Fish Biologist & Research Coordinator Bonneville Lock & Dam U.S. Army Corps of Engineers o: 541.374.3879

m: 503.278.2376

From: John Whiteaker

Sent: Thursday, April 2, 2020 9:58 AM

To: Mcbain, Melissa A CIV (USA) < Melissa. A. Mcbain@usace.army.mil> Cc: Derugin, Andrew G CIV (USA) < Andrew. G. Derugin@usace.army.mil>

Subject: RE: AFF discharge

Missy,

Thanks for looking into this and I know it's a busy time.

I've been thinking about pumping our used anesthetic water to a transfer tank and then trickle that water into the sewer pipe to keep from overloading the system. If the sewer drain pipe is 1 inch then we could use a .5-.75 inch pipe from the transfer tank. We usually have a couple of hours between water changes and that would give the transfer tank time to drain.

John

----Original Message-----

From: Mcbain, Melissa A CIV (USA) < Melissa. A. Mcbain@usace.army.mil>

Sent: Wednesday, April 1, 2020 3:28 PM To: John Whiteaker < whij@critfc.org>

Cc: Derugin, Andrew G CIV (USA) < Andrew.G. Derugin@usace.army.mil>

Subject: RE: AFF discharge

This is a little complicated to answer directly. But...

We do not have discharge permits. We are currently awaiting Industrial Wastewater permits from EPA, however the discharge from the AFF would be applicable under an aquaculture permit like hatcheries utilize. Where the State has been delegated authority they will issue permits for federal facilities. With NPDES Aquaculture I am unsure who has the authority, EPA or Ecology. I do not know if the AFF falls under this category or if there is an exemption.

To avoid a permit, I would suggest routing this discharge to the sewer system. I can talk internally about that with our treatment plant operator when he comes in this afternoon. Andrew and I discussed this previously and I need to revisit how the piping works or how feasible this is. I want to avoid discharge to the ground, that would be worst case scenario.

Thank you for your patience. I will get back to you very soon.

Missy McBain Bonneville Lock and Dam Environmental Specialist US Army Corps of Engineers Portland District

Office: (541) 374-3850 Cell: (971) 302-8056 From: John Whiteaker [mailto:whij@critfc.org] Sent: Thursday, March 12, 2020 9:22 AM

To: Mcbain, Melissa A CIV (USA) < Melissa.A.Mcbain@usace.army.mil> Cc: Derugin, Andrew G CIV (USA) < Andrew.G.Derugin@usace.army.mil>

Subject: [Non-DoD Source] RE: AFF discharge

Hi Missy,

Just a quick background. We are signed up for the AquiS INAD (participation letter attached) which allows us to immediately release fish we sample without a withdrawal period. In the study protocol (also attached) under Section XI. Treatment Schedules they discuss the disposal/discharge of the anesthetic water

E. Disposition of anesthetic solution

If at all possible, discharge of anesthetic solution remaining in the treatment containers following completion of treatment should be to the ground. If ground discharge is not possible, anesthetic solution may be released/mixed with facility effluent or released directly into public surface water. In situations where minimal dilution of anesthetic solution occurs prior to release to public surface waters, a pulsed-release of anesthetic solution should be employed to minimize discharge levels.

Aqui S20E contains a 10% concentration of the active ingredient eugenol. We use 230ml (23ml active ingredient) mixed with approximately 300 gallons of water for each anesthetic bath and we run 1-3 baths per day.

It's my understanding that the Corps no longer wants us to discharge our anesthetic water to the river so I contacted Carey Cholski who is the SW Region Permit Coordinator at Washington Department of Ecology and she stated that the preferred method would be to dispose anesthetic water to the ground, or septic/sewer system. She assumed we would need a discharge permit to dump anesthetic water to the river but was unsure about jurisdiction with us be a tribal organization and the facility being federal.

Due to logistical issues with the AFF, my long term goal would be to work out discharging anesthetic water to the river through WA Ecology, EPA, or with the Corps. In the short term, would it be possible to work out a solution to discharge the anesthetic water to the ground or to the Corps sewer/septic system? For the Corps discharge permitting, do you go through WA Ecology, Oregon DEQ, or EPA directly (is there a federal contact person I can connect with)? Please let me know how we should proceed and I can be available for a call or meet in person if necessary.

John Whiteaker
Fishery Scientist
Columbia River Inter-Tribal Fish Commission
700 NE Multnomah St., Suite 1200
Portland, OR. 97232
(503) 238-3562

From: Derugin, Andrew G CIV (USA) < Andrew.G.Derugin@usace.army.mil>

Sent: Thursday, April 23, 2020 3:53 PM To: John Whiteaker < whij@critfc.org>

Subject: RE: AHA Fish Sampling and Related Activities (002).pdf

No, I'll push it up and over to force it.

----Original Message----

From: John Whiteaker [mailto:whij@critfc.org]

Sent: Thursday, April 23, 2020 2:23 PM

To: Derugin, Andrew G CIV (USA) < Andrew.G. Derugin@usace.army.mil>

Subject: [Non-DoD Source] RE: AHA Fish Sampling and Related Activities (002).pdf

Hi Andrew,

Here are the badge request forms and I'll find out what day works best for the crew and get back to you. Still no word from Missy on dump options?

John

----Original Message----

From: Derugin, Andrew G CIV (USA) < Andrew.G. Derugin@usace.army.mil>

Sent: Thursday, April 23, 2020 1:36 PM To: John Whiteaker < whij@critfc.org>

Subject: RE: AHA Fish Sampling and Related Activities (002).pdf

Hi John,

I'll be in Sunday - Wednesday. Monday or Tuesday morning for the safety talk would be fine. Do we have access paperwork already for them?

We still need a finalized plan for disposal of the sampling water. Other than that, I reviewed your covid protocol and it sounds good to me. We are in between safety officers this week. Our regular officer will be back from deployment next week, so I'll ask for the official stamp of approval then.

Andrew

----Original Message-----

From: John Whiteaker [mailto:whij@critfc.org]

Sent: Thursday, April 23, 2020 1:20 PM

To: Derugin, Andrew G CIV (USA) < Andrew.G. Derugin@usace.army.mil>

Subject: [Non-DoD Source] RE: AHA Fish Sampling and Related Activities (002).pdf

Hi Andrew,

We are tentatively looking to set up the AFF next week and possibly start sampling May 4. We are looking to do a phased start with Crystal, Agnes, and Jayson for the first week or two and then start our two new hires. What days are you working next week so we can setup a safety talk for Crystal, Agnes, and Jayson? What outstanding issues do we need to iron out before we get going?

From: Derugin, Andrew G CIV (USA) <Andrew.G.Derugin@usace.army.mil>

Sent: Monday, April 27, 2020 8:40 AM To: John Whiteaker <whij@critfc.org>

Subject: AFF approval letter

Attached is your AFF work approval letter.

V/r,

Andrew Derugin Fish Biologist & Research Coordinator Bonneville Lock & Dam U.S. Army Corps of Engineers o: 541.374.3879

m: 503.278.2376

From: Derugin, Andrew G CIV (USA) < Andrew.G.Derugin@usace.army.mil>

Sent: Wednesday, April 29, 2020 5:24 PM To: John Whiteaker < whij@critfc.org > Subject: RE: Project Bio tomorrow/friday

Hi John,

Leif and our new hire Jeanette will be here Thursday/ Friday and can assist with badging, your access applications are ready to go with security. I'll be in M-Wed and happy to help.

As for the Aqui-s. I spoke with our new wastewater treatment plant manager and we reviewed the SDS. Unfortunately, he won't take it. It's an activated sludge plant and adding that chemical to the oxidation ditch on a regular basis would change the makeup of the bacteria. He doesn't have the facilities to deal with it separately.

All I can do right now is recommend we test your pump on Monday to see if it'll push over the wall and into an IBC effectively. I think they hold 275 gallons. Let's talk about this over the phone soon. Ben is familiar and can speak to it if I'm not in.

V/r,

Andrew Derugin
Fish Biologist & Research Coordinator
Bonneville Lock & Dam
U.S. Army Corps of Engineers
o: 541.374.3879
m: 503.278.2376

----Original Message----

From: John Whiteaker [mailto:whij@critfc.org] Sent: Wednesday, April 29, 2020 2:14 PM

To: Derugin, Andrew G CIV (USA) < Andrew.G. Derugin@usace.army.mil>

Subject: [Non-DoD Source] Project Bio tomorrow/friday

Hi Andrew,

We have a meeting tomorrow related to setup/sampling at the AFF. Is there Bio on duty tomorrow/Friday should we decide to get badged and start setting up? What's your schedule next week? Also, can we use the floor drain temporarily for the anesthetic water until we can play around with other options and/or get guidance from Missy? We will only run one tank per day.

John

Phone Call Monday May 4, 2020; Andrew Derugin and John Whiteaker: Andrew says we cannot dump anywhere on Bonneville Dam COE property.

From: Derugin, Andrew G CIV (USA) < Andrew.G.Derugin@usace.army.mil>

Sent: Wednesday, May 13, 2020 5:11 PM To: John Whiteaker < whij @critfc.org>

Cc: Hausmann, Benjamin J CIV USARMY CENWP (USA) < Benjamin.J.Hausmann@usace.army.mil>

Subject: Aff Anesthetic

Hi John,

Our environmental team made a decision on the Aqui-s disposal that I think you'll be able to work with. This decision is only for the 2020 sampling season, they will be conducting a more thorough review for the 2021 season.

In speaking with the USFWS AADAP Program Director and the INAD Program Administrator, we learned that CRITFC should in fact be covered by an FDA authorization letter that is sent annually to Andrew Pierce as the CRITFC program monitor. If you can provide this letter, then you may proceed with using Aqui-s and we can follow the discharge guidelines set forth in section XI of the Study Protocol, instead of the Aqui-s SDS.

The Study Protocol dictates that used anesthetic water may be discharged to ground or surface water. Bonneville's pending EPA NPDS permit does not cover this discharge to the Columbia River, so it must be discharged to ground. We've identified 3 suitable release areas on project, and ask that you cycle through them, in order to reduce saturation. Our Environmental Supervisor will monitor these locations throughout the season and decide if any changes are warranted. The locations are detailed in a document that our Environmental Supervisor will provide by the end of this week.

As for transporting the water, you are welcome to inquire with Brad Eppard about the temporary use of the trailers near the AFF. They are his equipment, and we cannot speak to their condition. You are welcome to begin sampling as soon as this comes together.

V/r,

Andrew Derugin
Fish Biologist & Research Coordinator
Bonneville Lock & Dam
U.S. Army Corps of Engineers
o: 541.374.3879

m: 503.278.2376

APPENDIX C

Table C1. List of PTAGIS interrogation sites (three letter code, name, and description) to use with maps that follow. Out of 341 active sites, 180 sites detected the fish tagged in 2020.

<u>2020.</u>		
Site Code	Site Name	Site Description
158	Fifteenmile Ck at Eighteenmile Ck	The site is located in Fifteenmile Ck at Eighteenmile Ck confluence at rkm 4.
30M	Thirtymile Crk John Day Basin	This site is located at rkm 0.5 on Thirtymile Creek, a tributarty to the John Day River.
85M	Eightmile Ck at Fivemile Ck	The site is located at the confluence of both creeks with three antennas in each.
ACB	Asotin Cr. at Cloverland Brdg.	The site is located near Cloverland Bridge (RKM 4.5) on Asotin Creek, a tributary of the Snake River.
		Near the mouth of Asotin Creek 50 m upstream of the Highway 129 bridge spanning the mainstem of Asotin Creek
ACM	Asotin Creek near mouth	in two serial sets of two antennas.
AFC	No./So. Fk Asotin Cr. Jct. ISA	The site is located at the confluence of the North and South Forks Asotin Creek, a tributary of the Snake River.
	l	Ahtanum Creek site is located 3 rkm from the mouth of Ahtanum Creek at the lower end of the Lasalle High
AH1	Ahtanum at Lasalle HS	School property.
		The site is located on Antoine Creek, 0.48 km upstream from the confluence with the Okanogan River. Antoine
ANT	Antoine Creek Instream Array	Creek enters the Okanogan River at RKM 98.5, approximately 6 km upstream from the city of Tonasket, WA.
B2J	Bonneville PH2 Juvenile	Bonneville Dam PH2 Juvenile Bypass and Sampling Facility.
BBA	Big Bear Creek	The site is located on Big Bear Creek about 1.3 rkm from the confluence with Potlatch River.
	0	The Bolles Bridge site is located about 200 feet above the State HWY 124 bridge on the Touchet River, near Bolles
BBT	Touchet River at Bolles Bridge	Road, at River Kilometer 65.2.
BCC	BON PH2 Corner Collector	Bonneville Dam 2nd Powerhouse Corner Collector Outfall Channel.
BGM	Burlingame Dam and Canal	Burlingame Diversion Dam is located on the lower Walla Walla River.
BO1	Bonneville Bradford Is Ladder	Bradford Island Adult Fishway at Bonneville Dam.
BO2	Bonneville Cascades Is Ladder	Cascades Island Adult Fishway at Bonneville Dam.
BO3	Bonneville WA Shore Ladder/AFF	Washington Shore Adult Fishway and AFF at Bonneville Dam; replaces B2A and BWL.
BO4	Bonneville WA Ladder Slots	Washington Shore Fishway Vertical Slots at Bonneville Dam.
BRC	Bear Valley Adult Video Weir	Interrogation system on the existing Bear Valley Creek Chinook adult monitoring weir.
BSC	Big Sheep Creek ISA at KM 6	The site is located in Big Sheep Creek at rkm 6.
		Beaver Creek site was located at rkm 3, in July 2014, the site was burned over by a wildfire and removed. In March
BVC	Beaver Creek, Methow River	2015, the site was reinstalled 2 rkm downstream from the original location.
CAL	Carson NFH Adult Return Ladder	Hatchery adult spring Chinook return ladder from the Wind River to Carson NFH.
CCU	Catherine Creek at Union	This is an in-stream interrogation system located near the town of Union on Catherine Creek, at rkm 25.
CCW	Catherine Creek Ladder/Weir	Instream detection array located in the adult return fish ladder at the Catherine Creek weir.
CFJ	Clark Flat Acc. Pond	This site monitors releases from Clark Flat acclimation pond, which is located at rkm 270 on the Yakima River.
CHL	Lower Chiwawa River	Chiwawa River rkm 1, located between the Chiwawa smolt trap and the Chiwawa Acclimation Ponds.
CHU	Upper Chiwawa River	Chiwawa River rkm 12, located above the Forest Road 62 bridge and below Alder Creek.
CLINA	Chimaniluma Canali	This site is located at rkm 0.4 on Chiwaukum Creek (Wenatchee River Basin), located near Tumwater Campground
CHW	Chiwaukum Creek	(access through site 51).
CRU	Upper Chewuch instream Array	Instream PIT tag interrogation site at RKM 28.35 on the Chewuch River.
CRW	Chewuch River above Winthrop	Chewuch River at river km 1, above Winthrop, WA.
DSF	Deschutes Sherars Falls	Site consists of two monitored weirs in the main fishway and two monitored weirs in the high flow fishway; one
		<u> </u>
DWL	Dworshak NFH adult trap	Located at the terminus of the Dworshak National Hatchery adult fish ladder in the North Fork Clearwater River.
EBO	East Bank Hatchery Outfall	Located in the East Bank Hatchery outfall channel.
EHL	Entiat NFH Adult Ladder	This adult interrogation site is located in the Entiat National Fish Hatchery adult ladder.
ENA	Upper Entiat River at rkm 17.1	The site is located approximately 400 meters above the mouth of the Mad River near the township of Ardenvoir
ENL	Lower Entiat River	Entiat River rkm 2, located immediately upstream of Entiat, WA.
EPR	East Fork Potlatch Array	The site is located in the East Fork Potlatch River about 3 rkm from the confluence with the Potlatch River.
ESS	EFSF Salmon River at Parks Cr	East Fk South Fk Salmon River (rkm 21) near Parks Creek. This site is located at the downstream end of a restoration zone at Eagle Valley Ranch on the Lemhi River, near
EVL	Eagle Valley Ranch - Lower	rkm 16.
LVL	Lagie variey Karicii - Lower	This site is located at the upstream end of a restoration zone at Eagle Valley Ranch on the Lemhi River, near rkm
EVU	Eagle Valley Ranch - Upper	20.
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Located in Grouse Creek in the Imnaha River Basin approximately 25m upstream from the confluence with the
GCM	Grouse Creek Mouth	Imnaha River.
GLC	Gold Creek, Methow River	The site is located at rkm 0.18 of Gold Creek in the Methow River Basin.
GOA	Little Goose Fish Ladder	Adult Fishway at Little Goose Dam.
GOJ	Little Goose Dam Juvenile	Little Goose Dam Juvenile Fish Bypass/Transportation Facility.
GRA	Lower Granite Dam Adult	Lower Granite Dam Adult Fishway and Fish Trap.
GRJ	Lower Granite Dam Juvenile	Lower Granite Dam Juvenile Fish Bypass/Transportation Facility.
GRS	Lower Granite Dam Spillway	This site is located 173 rkm on the Snake River at the spillway 1 for the Lower Granite Dam.
		Located at the mouth of the Hood River against the west side jetty just inside the bar where the Hood River
HRM	Hood River Mouth	meets the Columbia River.
HST	Touchet River at Harvey Shaw	Site at RKM 50 on the Touchet river.
HYC	Hayden Creek Instream Array	Lower section of Hayden Creek, in the Lemhi River Basin.

Table C1. Continued.

	C1. Continued.	
Site Cod	e Site Name	Site Description
ICH	Ice Harbor Dam (Combined)	Ice Harbor Dam Adult Fishways (both) and Full Flow Bypass.
ICL	Lower Icicle Instream Array	Located at rkm 0.4 on Icicle Creek (Wenatchee River Basin), near Leavenworth, WA.
IML	Imnaha River Weir Adult Ladder	Located in the adult return fish ladder at the Imnaha River weir. Site is on public land.
IR1	Lower Imnaha River ISA at km 7	Lower Imnaha River at river km 7 (N 45.761162, W -116.750658).
IR2	Lower Imnaha River ISA at km 10	Lower Imnaha River at river km 10 (N 45.742839 W -116.764563).
IR3	Upper Imnaha River ISA at km 41	Upper Imnaha River at river km 41 (N 45.49004 W 116.80393).
IR4	Imnaha Weir Downstream Array	Located downstream of the Oregon Dept. of Fish and Wildlife (ODFW) fish weir on the Imnaha River.
IR5	Imnaha Weir Upstream Array	Located upstream of the Oregon Dept. of Fish and Wildlife (ODFW) fish weir on the Imnaha River.
JA1	Jacks Creek Seasonal IPTDS	The site is downstream of rkm 1 on Jacks Creek.
JD1	John Day River, McDonald Ferry	John Day River in-stream detection, near McDonald Ferry at RM 20.
JDJ	John Day Dam Juvenile	John Day Dam Juvenile Fish Bypass and Sampling Facility.
JDM	Upper John Day Array	Located on the Upper Mainstem John Day River approximately 7 miles upstream of Dayville, Oregon.
JO1	John Day Dam South Fish Ladder	The interrogation site at the John Day Dam south fish ladder.
JO2	John Day Dam North Fish Ladder	The interrogation site at the John Day Dam north fish ladder.
JOC	Joseph Creek ISA at km 3	Joseph Creek, Grande Ronde basin at river km 3 (N 46.030016, W -117.016042).
JPT	•	
JPI	Juvenile Pond Touchet	The site is at rkm 87.5 on the Touchet River.
	L	
KHS	Big Bear Cr at Kendrick HS	The site is located near the mouth of Big Bear Creek adjacent to the high school in the town of Kendrick, Idaho.
KLR	Klickitat River Floating Array	The array is located in the lower Klickitat River, Klickitat County, Washington.
KRS	SF Salmon River at Krassel Creek	This in-stream interrogation system is located near Krassel Creek at rkm 65 on the South Fork Salmon River.
LAP	Libby Creek, Methow River	The site at RKM 1 on Libby Creek.
LC1	Lower Lolo Creek at rkm 21	Lolo Creek, a tributary to the Clearwater River located at river km 522.224.087.021 (N 46.294434 W -115.976119).
LC2	Upper Lolo Creek at rkm 25	Lolo Creek, a tributary to the Clearwater River located at river km 522.224.087.025 (N 46.290562 W -115.934153.
LFF	Lyle Falls Fishway	The Lyle Falls Fishway in Klickitat River.
		The array is located in the Little Klickitat River, a tributary to the Klickitat River, Klickitat County, Washington,
LKR	Little Klickitat River Array	approximately 0.4 kilometers upstream from the confluence.
		This site is located 0.42 km from the confluence with the Okanogan River on Loup Coup Creek which enters the
LLC	Loup Loup Creek Instream Array	Okanogan River at RKM 27.2, within the city of Malott, WA.
LLR	Lower Lemhi River	Lower Lemhi River in Salmon, ID.
LMA	Lower Monumental Adult Ladders	This interrogation site is in both ladders at Lower Monumental Dam.
LMJ	Lower Monumental Dam Juvenile	Lower Monumental Dam Juvenile Fish Bypass/Transportation Facility.
		Lower Methow River near the WDFW 'Miller Hole' access site on the lower Methow River immediately upstream
LMR	Lower Methow River at Pateros	of Pateros, WA.
LNF	Leavenworth NFH Adult Ladder	Located in the Leavenworth National Fish Hatcheries adult ladder and holding pond.
LRL	Lower Lochsa River Array Site	Site is located in lower 1km of the mainstem Lochsa River.
LRU	Lochsa River Upper Site	Site is located in lower 3km of the mainstem Lochsa River.
LRW	Lemhi River Weir	Lemhi River above the mouth of Hayden Creek and below the IDFG weir.
LIVV	Lemm River Wen	Near the mouth of the Tucannon River. The upstream array group was located at an abandoned railroad bridge
LTD	Lauren Turananan Diren	abutment upstream of Hwy 261 on the Tucannon River downstream from Starbuck. The CO in-stream array was
LTR	Lower Tucannon River	relocated below the Hwy 261 bridge on Sept. 29, 2010.
	l	This site is located in Wenas Creek about 2 rkms upstream of the confluence with the Yakima River on property
LWC	Lower Wenas Creek	owned by the Bureau of Reclamation.
LWE	Lower Wenatchee River	Wenatchee River rkm 2.
		Adult fish ladder allowing passage from the Little White Salmon River into the adult holding ponds at Little White
LWL	Ltl. White Salmon NFH returns	Salmon NFH.
LWN	Little Wenatchee River	Instream PIT tag interrogation site at rkm 4 located at the old fish weir.
MAD	Mad River, Entiat River Basin	This site is at Mad River rkm 1, located at Ardenvoir, WA.
1		
MAR	Marsh Cr at Lola Cr Campground	The site is on Marsh Creek at Lola Creek Campground.
MC1	McNary Oregon Shore Ladder	Oregon Shore Adult Fishway at McNary Dam.
MC2	McNary Washington Shore Ladder	Washington Shore Adult Fishway at McNary Dam.
		The site is located in the fish bypass and passage facilities at the (Bennington) Diversion Dam and the first
MCD	Mill Creek Diversion Project	Division Works in the Mill Creek Diversion Project in the Walla Walla Basin, near rkm 19.
MCJ	McNary Dam Juvenile	McNary Dam Juvenile Fish Bypass/Transportation Facility.
MCL	Lower Mission Creek Instream	Located at rkm 0.7 on Mission Creek (Wenatchee River Basin), near Cashmere, WA.
MIN	Mine Reach of Wind River, WA	The site is located in upper Wind River approximately 1.75 road Km upstream of the mouth of Falls Creek.
	1	The site is on the Middle Fork John Day River, near the current confluence with Mosquito Creek on Malheur
MJ1	Middle Fork John Day Array	National Forest Service Land.
MJ2	Middle Fork John Day Ritter	The site is located on the Middle Fork John Day River at RKM 24 at Ritter Oregon.
MR1	Minam River at River KM 0.5	The site is located in the Minam River approximately 0.5 km upstream of the confluence of the Minam and
MRC	Methow River at Carlton	Located in the mainstem Methow River near the town of Carlton at rkm 45.
.,,,,,,	carow raver at carrior	Methow River. During 2009 and early 2010, the array was located at river km 81, above Winthrop, WA near
	NAME OF TAXABLE OF	Winthrop National Fish Hatchery. In Sept. 2010 it was moved upstream to its new location below Wolf Creek on
MRW	Methow River at Winthrop	the mainstem Methow River, at river km 85.
	1	On the outlet of the Washington Department of Fish and Wildlife (WDFW) Methow Hatchery located on the
MSH	Methow Fish Hatchery Outfall	Methow River at Rk 82.3 from the confluence with the Columbia River.
		Array is approximately 2.5 km upstream of the mouth of Mill Creek and the confluence with the Columbia River,
MTD	Mill Creek at The Dalles	below The Dalles Dam.
		The Middle Tucannon River site is located about 250 feet above the River Ranch Ln bridge on the Tucannon River,
MTR	Middle Tucannon River	at River Kilometer 19.5.
MVF	Moving Falls Fish Ladder	Located in the fish ladder at a site known as Moving Falls on the West Fork of the Hood River.
		•

Table C1. Continued.

NAU	Lower Nason Creek Upper Nason Creek Nursery Bridge Adult Ninemile Creek Instream Array Omak Creek below Mission Falls Okanagan Channel at VDS-3 Lower Okanogan Instream Array McIntyre Dam Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70 Priest Rapids Adult	Nason Creek rkm 1, located within Lake Wenatchee State Park. Nason Creek rkm 19 (Wenatchee River Basin). Nursery Bridge Dam Fishways (both), Walla Walla River at Milton-Freewater, OR. The site is located on Ninemile Creek, 0.78 km upstream from the confluence with Lake Osoyoos. north of the town of Oroville, WA. The site is located approximately 9.90 rkm upstream from the confluence of the Okanogan River. The OKC site is located in the Okanagan (Canadian spelling) Channel at 310th Avenue/Road 18 upstream from Osoyoos Lake. Site at RKM 24.9 on the mainstem Okanogan River, upstream of Chiliwist area in Okanogan County. The site montiors each side of spill bay 1 at McIntyre Dam. The dam is located downstream of Vaseux Lake and upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA. The array is on Panther Creek approximately 5 rkm from the confluence with Salmon River.
NBA NIMC NOBF COOKC COOKL LICENSE COOK COOK COOK COOK COOK COOK COOK COO	Nursery Bridge Adult Ninemile Creek Instream Array Omak Creek below Mission Falls Okanagan Channel at VDS-3 Lower Okanogan Instream Array McIntyre Dam Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	Nursery Bridge Dam Fishways (both), Walla Walla River at Milton-Freewater, OR. The site is located on Ninemile Creek, 0.78 km upstream from the confluence with Lake Osoyoos. north of the town of Oroville, WA. The site is located approximately 9.90 rkm upstream from the confluence of the Okanogan River. The OKC site is located in the Okanagan (Canadian spelling) Channel at 310th Avenue/Road 18 upstream from Osoyoos Lake. Site at RKM 24.9 on the mainstem Okanogan River, upstream of Chiliwist area in Okanogan County. The site montiors each side of spill bay 1 at McIntyre Dam. The dam is located downstream of Vaseux Lake and upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River.
NMC NOBF COOKL LL OKM NOKP P OKS S OKV V OMF COOMP COO	Ninemile Creek Instream Array Omak Creek below Mission Falls Okanagan Channel at VDS-3 Lower Okanogan Instream Array McIntyre Dam Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	The site is located on Ninemile Creek, 0.78 km upstream from the confluence with Lake Osoyoos. north of the town of Oroville, WA. The site is located approximately 9.90 rkm upstream from the confluence of the Okanogan River. The OKC site is located in the Okanagan (Canadian spelling) Channel at 310th Avenue/Road 18 upstream from Osoyoos Lake. Site at RKM 24.9 on the mainstem Okanogan River, upstream of Chiliwist area in Okanogan County. The site montiors each side of spill bay 1 at McIntyre Dam. The dam is located downstream of Vaseux Lake and upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OBF CONC CONC CONC CONC CONC CONC CONC CON	Omak Creek below Mission Falls Okanagan Channel at VDS-3 Lower Okanogan Instream Array McIntyre Dam Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	town of Oroville, WA. The site is located approximately 9.90 rkm upstream from the confluence of the Okanogan River. The OKC site is located in the Okanagan (Canadian spelling) Channel at 310th Avenue/Road 18 upstream from Osoyoos Lake. Site at RKM 24.9 on the mainstem Okanogan River, upstream of Chiliwist area in Okanogan County. The site montiors each side of spill bay 1 at McIntyre Dam. The dam is located downstream of Vaseux Lake and upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OBF CONC CONC CONC CONC CONC CONC CONC CON	Omak Creek below Mission Falls Okanagan Channel at VDS-3 Lower Okanogan Instream Array McIntyre Dam Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	The site is located approximately 9.90 rkm upstream from the confluence of the Okanogan River. The OKC site is located in the Okanagan (Canadian spelling) Channel at 310th Avenue/Road 18 upstream from Osoyoos Lake. Site at RKM 24.9 on the mainstem Okanogan River, upstream of Chiliwist area in Okanogan County. The site montiors each side of spill bay 1 at McIntyre Dam. The dam is located downstream of Vaseux Lake and upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKC COOKL LI OKM N OKP P OKS S OKV V OMF CO OMP CO	Okanagan Channel at VDS-3 Lower Okanogan Instream Array McIntyre Dam Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	The OKC site is located in the Okanagan (Canadian spelling) Channel at 310th Avenue/Road 18 upstream from Osoyoos Lake. Site at RKM 24.9 on the mainstem Okanogan River, upstream of Chiliwist area in Okanogan County. The site montiors each side of spill bay 1 at McIntyre Dam. The dam is located downstream of Vaseux Lake and upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKL LI OKM N OKP P OKS S OKV V OMF C OMP C OMP C PCA P PD7 C PRA P PPRA P PRA P PRA P RCL R RCS R	Lower Okanogan Instream Array McIntyre Dam Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	Osoyoos Lake. Site at RKM 24.9 on the mainstem Okanogan River, upstream of Chiliwist area in Okanogan County. The site montiors each side of spill bay 1 at McIntyre Dam. The dam is located downstream of Vaseux Lake and upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKL LI OKM N OKP P OKS S OKV V OMF C OMP C OMP C PCA P PD7 C PRA P PPRA P PRA P PRA P RCL R RCS R	Lower Okanogan Instream Array McIntyre Dam Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	Site at RKM 24.9 on the mainstem Okanogan River, upstream of Chiliwist area in Okanogan County. The site montiors each side of spill bay 1 at McIntyre Dam. The dam is located downstream of Vaseux Lake and upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKM N OKP P OKS S OKV V OMF C OMK C OMP C	McIntyre Dam Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	The site montiors each side of spill bay 1 at McIntyre Dam. The dam is located downstream of Vaseux Lake and upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKP P OKS S OKV V OMF C OMK C OMP C OMP C PPCA P PPTA P PRA P PRA P RCJ R RCC R	Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	upstream of Okanagan Lake, in Canada. Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKP P OKS S OKV V OMF C OMK C OMP C OMP C PPCA P PPTA P PRA P PRA P RCJ R RCC R	Penticton Channel PIT Array Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	Penticton Channel, is the channelized portion of the Okanagan River connecting Okanagan Lake with Skaha Lake, within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKS S OKV V OMF C OMK C OMP C OMP C PPCA P PPCA P PPTA P PPRO P PRO P RCJ R RCJ R RCCS R	Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	within the city of Penticton BC. The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKS S OKV V OMF C OMK C OMP C OMP C PPCA P PPCA P PPTA P PPRO P PRO P RCJ R RCJ R RCCS R	Shingle Creek Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	The site is on Shingle Creek, a tributary to the Okanagan River in Canada, and is located immediately adjacent to the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKV V OMF C OMK C OMP C OMP C PCA P PD7 C PRA P PPRA P PRA P RCI R RCL R RCS R	Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	the Okanagan Nation Alliance (ONA) Fish Hatchery. The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OKV V OMF C OMK C OMP C OMP C PCA P PD7 C PRA P PPRA P PRA P RCI R RCL R RCS R	Vaseux Creek, BC, Canada Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	The site is located 200m upriver from mouth of Vaseux Creek a trib of Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OMF COMK COMP COMP COMP COMP COMP COMP COMP COMP	Omak Creek Above Mission Falls Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OMK COMP COMP COMP COMP COMP COMP COMP COMP	Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	The site is located on Omak Creek, 10.5 rkm from the confluence with the Okanogan River. Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OMK COMP COMP COMP COMP COMP COMP COMP COMP	Omak Creek Instream Array Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	Omak Creek enters the Okanogan River at RKM 51.5, approximately 1 km upstream from the city of Omak, WA. The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OMP C PCA P PD7 C PRA P PRH P PRO P RCJ R RCL R RCS R	Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	The site is located on Omak Creek, 0.24 rkm from the confluence with the Okanogan River. Located at 23 Brooks Tracts Rd. in Omak, WA.
OMP C PCA P PD7 C PRA P PRH P PRO P RCJ R RCL R RCS R	Omak Acclimation Pond Panther Creek Array Columbia River Estuary rkm 70	Located at 23 Brooks Tracts Rd. in Omak, WA.
PCA P PD7 C PRA P PRH P PRO P RCJ R RCL R RCS R	Panther Creek Array Columbia River Estuary rkm 70	
PD7 C PRA P PRH P PRO P RCJ R RCL R RCS R	Columbia River Estuary rkm 70	The array is on Panther Creek approximately 5 rkm from the confluence with Salmon River.
PRA P PRH P PRO P RCJ R RCL R RCS R		
PRH P PRO P RCJ R RCL R RCS R	Priest Rapids Adult	The site is in the Columbia River Estuary at river km 70.
PRO P RCJ R RCL R RCS R		Priest Rapids Dam Adult Fishways (both).
PRO P RCJ R RCL R RCS R		Priest Rapids Hatchery outfall channel. The site is located just upstream of the typical point of inundation in the
RCJ R RCL R RCS R	Priest Rapids Hatchery Outfall	channel.
RCL R RCS R	Prosser Diversion Dam Combined	Adult Fishways (all three) and Juvenile Bypass/Sampling Facility at Prosser Dam.
RCS R	Rock Creek John Day Basin	This site is located at rkm 2.0 on Rock Creek a tributary to the John Day River.
	Rock Creek (WA) at rkm 5	The site is on Rock Creek (WA) at rkm 5 near the Yakama Nation Longhouse.
RIA R	Rock Creek (WA) at rkm 14	The sites is on Rock Creek (WA) at rkm 14 at the confluence of Rock and Squaw Creeks.
	Rock Island Adult	Rock Island Dam Adult Fishways (all three).
ROZ R	Roza Diversion Dam (Combined)	Roza Dam Smolt Bypass.
RRF R	Rocky Reach Fishway	Rocky Reach Dam Adult Fishway.
rrj r	Rocky Reach Dam Juvenile	Juvenile Fish Bypass Surface Collector.
RSH R	Ringold Springs Hatch. Outfall	PIT tag detection system located in the Ringold Springs Hatchery outfall channel.
		Salmon Creek enters the Okanogan River at RKM 41.3, in the town of Okanogan, WA. The site is approximately
SAO S	Salmon Creek below OID DIV	6.35 KM upstream from the confluence.
		Salmon Creek enters the Okanogan River at RKM 41.3, in the town of Okanogan, WA. The site is approximately 2.9
SA1 S	Salmon Creek Instream Array	KM upstream from the confluence.
SAT L	Lower Satus Creek	This site is located approximately 1700 meters upstream from the confluence of the Yakima River on Satus Creek.
SC1 L	Lower SF Clearwater R at rkm 1	Lower South Fork Clearwater River at river km 0.9 (N 46.13685 W -115.98091).
SC2 L	Lower SF Clearwater R at rkm 2	Lower South Fork Clearwater River at river km 2 (N 46.12749 W -115.97730).
	Spring Creek NFH Adult Ladder	Fish ladder allowing passage from the Columbia River into the adult holding ponds at Spring Creek NFH.
SCP S	Spring Creek Acclimation Pond	Juvenile releases from and adults returning to Winthrop National Fish Hatchery.
SFG S	SF Salmon at Guard Station Br.	Located at rkm 30 near the lower South Fork Salmon River Guard Station on the South Fork Salmon River.
		This site is an in-stream array located on the South Fork John Day River south of Dayville on the PW Schneider
SJ1 S	SF John Day (Mid)	Wildlife Management Area (ODFW) near rkm 10.
		Skaha Dam is located within the community of Okanagan Falls at the south end of Skaha Lake, BC along the
SKA S	Skaha Dam Fish Ladder	Okanagan River. The fishway is at the western edge of the dam.
	Summit Creek, Klickitat	The site is located 400m up Summit Creek, from the confluence with Klickitat River.
	Sunnyside Instream Array	Located 600 M below Sunnyside Dam on the Yakima River.
	Lower Selway River Array	PIT tag array is located 5 rkm upstream of the mouth of the Selway River in the upper Clearwater Basin Idaho.
	•	
sw2 U	Upper Selway River Array	PIT tag array is located 13 rkm upstream of the mouth of the Selway River in the upper Clearwater Basin Idaho.
	Sweetwater Cr. Near Its Mouth	The site is an in-stream array approximately 0.1 kilometers upstream from the mouth of Sweetwater Creek.
		Tree in the second seco
syc s		The site is on Snyder Creek approximately 1.3 kilometers upstream from the confluence with the Klickitat River.

Table C1. Continued.

Site Code	Site Name	Site Description
TAY	Big Creek at Taylor Ranch	Centered around the bridge at Taylor Ranch, Big Creek, ID.
TD1	The Dalles East Fish Ladder	East Fish Ladder at The Dalles Dam.
TD2	The Dalles North Fish Ladder	North Fish Ladder at The Dalles Dam.
		The Tucannon Fish Hatchery site is located about 200 feet above the Tucannon Fish Hatchery Adult Trap and Water
TFH	Tucannon Fish Hatchery	Intake System on the Tucannon River, at River Kilometer 59.4.
TMF	Three Mile Falls Dam Combined	Adult Fishway and Juvenile Bypass/subsampling facility at Three Mile Falls Dam.
TNK	Tunk Creek Instream Array	The site is on Tunk Creek approximately 50 meters upstream from the confluence of the Okanogan River.
		The site is located approximately 1700 meters upstream from the confluence of Toppenish Creek with the Yakima
TOP	Lower Toppenish Creek	River at rkm 130.
TP2	Toppenish Creek at Simcoe Ck	The array is located about 0.75 km upstream from the confluence of Toppenish Creek and Simcoe Creek.
TPJ	Tucannon at Panjab Creek	The site is an instream array at rkm 74.5 on the Tucannon River near the mouth of Panjab Creek.
TR1		
INI	Lower Trout Cr - Deschutes	The site is located at rkm 0.7 upstream from the confluence with the Deschutes River on privately owned land.
TRA	Trout Creek Auxillary Site	The site si in Trout Creek, WA at rkm 2.
		The site is located at rkm 2 upstream from the confluence with Wind River (WA) above Hemlock Lake on Trout
TRC	Trout Creek, Wind River	Creek.
TUF	Tumwater Dam Adult Fishway	Adult Fishway at Tumwater Dam.
TWR	Lwr Twisp Rvr near MSRF Ponds	Lower Twisp River adjacent to the Methow Salmon Recovery Foundation Ponds.
		The TWX experimental trawl detector is typically deployed in the Columbia River estuary, at and above Jones
TWX	Estuary Towed Array (Exp.)	Beach (rkm 75).
UGR	Upper Grande Ronde at rkm 155	Grand Ronde River located at river km 522.271.155 (45. 593338, -117.903124).
UGS	Upper Grande Ronde Starkey	In-stream detection array near the upper Grande Ronde weir at Starkey.
		The site is an instream detection array in the Umatilla River adjacent to the City of Hermiston's Recycled Water
UMW	Umatilla R Recycled Water Fac	Plant.
USE	Upper Salmon River at rkm 437	Located in the Salmon River at river km 522.303.437 (N45.028939 W-113.915892).
USI	Upper Salmon River at rkm 460	Located in the mainstem Salmon River at river km 522.303.460 (N44.890380 W-113.962575).
		The Upper Tucannon River site is located about 200 yards above Don Howards House on the Tucannon River, at
UTR	Upper Tucannon River	River Kilometer 53.2.
UWE	Upper Wenatchee River	Located at rkm 81.2 on the Wenatchee River, near Plain, WA.
VC1	Valley Creek, Upstream Site	Located on Valley Creek at Stanley, ID., in the Upper Salmon River.
WB1	White Bird Cr Seasonal IPTDS	The site is located at rkm 2.
WEA	Wells Dam, DCPUD Adult Ladders	Wells Dam Adult Fishways (both).
WEH	Wells Dam Hatchery	Points of detection include the adult fish handling facility, juvenile pond outflows and adult volunteer channel.
WEJ	Wells Dam Bypass Bay Sample	Site is located in Bypass Bay 2 on the right (west) side of Wells dam on the Columbia River, Washington.
WEN	Wenaha River Mouth	Array on the Wenaha River near Troy, Oregon.
WFC	Wolf Creek, Methow River	The site is located approx. 330m up Wolf Creek, from the confluence with Methow River.
WHC	Lwr White Creek, Klickitat Bsn	Site is in White Creek (Klickitat River Basin) approximately 150 meters upstream from the mouth.
WHS	Wildhorse Spring Creek	The site is located approximately 0.1 rkm upstream from the confluence with the Okanogan River.
WR1	Wallowa River at river km 14	Instream array located in the Wallowa River, Oregon rkm 522.271.131.014 (N 45.633769 ° W -117.73369°).
		The array is located in the Wallowa River at approximately river km 32 just upstream of Lower Diamond Road
WR2	Wallowa River at Rkm 32	bridge near the town of Wallowa, OR.
WRA	Upper Wind River Auxillary	The site is in the Wind River, WA at rkm 27.
WRU	Upper Wind River (WA) rkm 30	At rkm 30 of the Wind River, WA. The site is at the FR3065 bridge over the Wind River.
WSH	Warm Springs Hatchery	Adult Fishway at Warm Springs NFH.
WSR	Warm Springs River PIT Array	The Warm Springs River PIT tag array is installed end-to-end across the entire river channel.
WTL	White River, Wenatchee Basin	A permanent instream PIT tag interrogation site at RKM 2.88 on the White River.
WWB	Walla Walla River Barge	Site is a floating barge anchored in place at roughly 5 rkm upstream from the mouth.
YFK	Yankee Fork Salmon River	The site is located 3.14 rkm upstream from the confluence with the Salmon River at an elevation of 1855m.
ZEN	Secesh River at Zena Cr Ranch	Near the Zena Creek Ranch.
		Zosel Dam is located at Okanogan River km 132, approximately 3 km downstream from the outlet of Lake Osoyoos
ZSL	Zosel Dam Adult Fishways	in the town of Oroville, Washington.

Table C2. Season by season activities of steelhead tagged in 2020 and later labeled as kelts or repeat spawners when they began migrating downstroam (after March 31st) and unstroam in spring summer, or fall of 2020, presumably to and from the ocean

Tag Year	Tag Number	First Detection After Tagging 2020 in All Seasons	Fall 2020	Winter 2020/21	Spring 2021	Summer 2021	Fall 2021	Comments
2020	3DD.003D3659DD	Bonneville WA Ladder - August 7th			Estuary Towed Array - April 14th			Steelhead tagged on August 5th, 2020 at the Bonnevill AFF.
2020	3DD.003D53B1D6	The Dalles East Ladder - July 26th	McNary - October 22nd	Lower Umatilla - January 7th	Lower Umatilla - May 1st Bonneville Corner Collector	*		AFF.
2020	3DD.003D53AC71	Lower Wind - April 23rd			May 7th Trout Creek (Wind) - May 4th			Steelhead captured at Bonneville on June 16th, 2020,
					Bonneville Corner Collector May 16th Middle Walla Walla - March 4th			where it was between June and April is unknown.
2020	3DD.003D53B1CD	The Dalles East Ladder - July 26th	McNary - October 15th	Lower Walla Walla - February 23rd	Lower Walla Walla - April 1st Bonneville Corner Collector April 26th	t		
2020	3DD.003D365A02	The Dalles North Ladder - August 5th	Lower Granite - October 20th		Lower Granite - March 21st Bonneville Corner Collector May 15th			
2020	3DD.003D365A7F	The Dalles North Ladder - August 5th	Wells - August 24th		Rocky Reach Juvenile - April 10th Bonneville Corner Collector May 3rd		Bonneville WA Ladder - September 18th	Steelhead spawned in spring and then may have entered the ocean for a short period before heading back upriver.
2020	3DD.003D365A0B	The Dalles North Ladder - August 9th	Prosser Dam (Yakima) - October 23rd		Bonneville Corner Collector May 29th Lower Toppenish Creek			
2020	3DD.003D53B114	The Dalles East Ladder - July 20th	Prosser Dam (Yakima) - October 14th		(Yakima) - March 19th Lower Toppenish Creek (Yakima) - April 12th Bonneville Corner Collector			
2020	3DD.003D631928	The Dalles East Ladder - October 11th	Lower Granite - October 27th		May 7th Bonneville Corner Collector May 29th			
2020	3DD.003D53EE76	The Dalles East Ladder - September 30th	Lower Granite - October 25th		Bonneville Corner Collector April 24th	-		
2020	3DD.003D3656C8	The Dalles East Ladder - September 12th	Lower Granite - September 17th		Bonneville Corner Collector May 21st	-		
2020	3DD.003D53B15D	The Dalles East Ladder - July 20th	Lower John Day - November 5th		Bonneville Corner Collector May 13th	-		
2020	3DD.003D53AF8F	The Dalles North Ladder - July 24th	Tumwater Dam (Wenatchee) - August 16th		Bonneville Corner Collector April 29th Lower Granite Spillway -	-		
2020	3DD.003D365B3B	The Dalles East Ladder - September 10th	Lower Granite - October 4th		April 25th Bonneville Corner Collector May 7th			
2020	3DD.003D53A9B0	The Dalles East Ladder - September 28th	Lower Granite - October 11th		Bonneville Corner Collector May 26th	-		
2020	3DD.003D53AC05	The Dalles East Ladder - September 25th	Three Miles Falls Dam (Umatilla) - November 7th		Bonneville Corner Collector April 28th	-		Steelhead captured at Bonneville on July 28th, 2020, where it was between August and November is unknown.
2020	3DD.003D53ABDC	The Dalles East Ladder - July 11th	Lower Monumental - July 20th		Bonneville Corner Collector April 21st	-		
2020	3DD.003DA24FDD	The Dalles North Ladder - August 8th	Prosser Dam (Yakima) - September 15th		Bonneville Corner Collector May 18th	-		
2020	3DD.003D53B19B	The Dalles East Ladder - July 19th	Lower Granite - August 16th		Panther Creek (Salmon) - April 6th	Bonneville Corner Collector June 2nd		
2020	3DD.003D53AB98	The Dalles East Ladder - July 12th	John Day - September 27th	Lower John Day - December 21st	Bonneville Corner Collector May 5th	-		
2020	3DD.003D365661	The Dalles East Ladder - August 20th	Lower Granite - September 12th		Lower Granite Spillway - May 31st	Bonneville Corner Collector June 10th	-	
2020	3DD.003D365AD6	The Dalles North Ladder - August 5th	Lower Granite - September 19th		Lapwai Creek (Clearwater) - March 7th Sweetwater Creek (Clearwater) - March 9th Lapwai Creek (Clearwater) - March 19th Bonneville Corner Collector			
2020	3DD.003D365BDA	The Dalles East Ladder - October 21st	Lower Granite - November 14th	Joseph Creek (Grande Ronde) - February 24th	April 30th Joseph Creek (Grande Ronde) - March 31st Bonneville Corner Collector May 4th	-		
2020	3DD.003D3659F1	The Dalles North Ladder - August 6th	Lower Granite - September 13th		Joseph Creek (Grande Ronde) - March 25th Joseph Creek (Grande Ronde) - April 20th Bonneville Corner Collector May 11th			
2020	3DD.003D53AF54	The Dalles East Ladder - July 17th	Lower Granite - September 25th		Marsh Creek (Salmon) - April 22nd Marsh Creek (Salmon) - May 7th Bonneville Corner Collector May 29th	× .		
2020	3DD.003D365BD3	The Dalles East Ladder - September 5th	Lower Granite - September 21st		SF Salmon - April 8th Lower Granite Spillway - May 10th Bonneville Corner Collector May 20th	*		
2020	3DD.003D53AFAC	The Dalles East Ladder - July 24th	Lower Granite - October 25th		Lower Imnaha - April 7th Middle Imnaha - April 30th	Bonneville Corner Collector June 6th		
2020	3DD.003D53F00F	The Dalles East Ladder - September 19th	Lower Granite - September 27th		SF Salmon - April 3rd Secesh (Salmon) - April 19th to May 14th	Bonneville Corner Collector June 7th		
2020	3DD.003D53AFCE	The Dalles East Ladder - September 10th	Lower Granite - September 29th		Lower Wallowa (Grande Ronde) - April 29th Minam (Grande Ronde) - April 30th to May 31st	Bonneville Corner Collector June 22nd		
2020	3DD.003D365681	The Dalles East Ladder - September 20th	Lower Granite - October 11th		Lower Granite Spillway - May 6th Ice Harbor - May 14th Bonneville Corner Collector May 20th			
2020	3DD.003D365540	The Dalles East Ladder - July 5th	Lower Granite - July 21st		Lower Granite Spillway - May 9th Bonneville Corner Collector May 19th			
2020	3DD.003D53ADEB	The Dalles East Ladder - July 31st	Prosser Dam (Yakima) - September 29th	Lower Satus Creek (Yakima) January 15th	Bonneville Corner Collector April 3rd			
2020	3DD.003D365764	The Dalles East Ladder - August 23rd	Wells - September 26th	Lower Methow - January 30th	Middle Methow - March 15th Twisp (Methow) - March 15th to April 18th Rocky Reach Juvenile Bypass - April 26th Bonneville Corner Collector May 10th			Steelhead was sampled and released at the Twisp trap/weir on April Sth.
2020	3DD.003D365A77	The Dalles North Ladder - August 14th	Lower Granite - September 25th		Bonneville Corner Collector May 15th			
2020	3DD.003D365A2F	The Dalles East Ladder - September 11th	Middle Deschutes - October 9th	John Day - December 23rd Lower Monumental - January 15th	Lower Granite - March 31st Bonneville Juvenile Bypass - May 31st			
2020	3DD.003D3655FF	The Dalles East Ladder - September 9th	Three Mile Falls Dam (Umatilla) - November 8th		Lower Umatilla - March 17th Three Mile Falls Dam (Umatilla) - May 14th John Day Juvenile Bypass -	, ,		
2020	3DD.003DA24FD8	The Dalles East Ladder -	Lower Granite - October 6th		May 18th SF Salmon - May 1st to 27th	John Day Juvenile Bypass -		
2020	3DD.003D53EF5C	September 19th The Dalles East Ladder - September 25th	Lower Granite - October 15th		McNary Juvenile Bypass - April 23rd	June 12th		
2020	3DD.003D365696	The Dalles North Ladder - September 27th	McNary - October 4th		April 23rd Lower Touchet (Walla Walla) - March 7th Lower Touchet (Walla Walla)) - April 3rd to May 2nd Lower Touchet (Walla	*		

Table C2 (Cor	ntinued).						_	
Tag Year	Tag Number	First Detection After Tagging 2020 in All Seasons	Fall 2020	Winter 2020/21	Spring 2021	Summer 2021	Fall 2021	Comments
2020	3DD.003D53B170	The Dalles East Ladder - September 23rd	Lower Monumental - September 29th		Tucannon - March 6th to 31st		Lower Monumental - October 8th	Steelhead spawned in spring and then may have entered the ocean for a short period before heading back upriver.
2020	3DD.003D53AE24	The Dalles East Ladder - September 10th	Lower Granite - October 1st	Lower Tucannon - January 16th	Lower Tucannon - March 15th Lower Monumental Juvenile Bypass - April 1st			
2020	3DD.003D365699	The Dalles East Ladder - August 30th	Lower Granite - October 22nd		Joseph Creek (Grande Ronde) - March 5th Joseph Creek (Grande Ronde) - April 3rd Lower Granite Juvenile Bypass - April 11th			
2020	3DD.003D365ADB	The Dalles East Ladder - September 10th	Lower Granite - October 2nd		Lower Granite Spillway - April 17th			
2020	3DD.003D53EFB3	The Dalles East Ladder - October 19th	Little Goose - November 9th	Lower Granite - February 27th	Lower Granite Spillway - May 2nd			
2020	3DD.003D365A8A	The Dalles East Ladder - September 29th	Lower Granite - October 13th		Lower Granite Spillway - May 7th			
2020	3DD.003D365A4D	The Dalles North Ladder - August 28th	Lower Granite - October 6th		Lower Granite Spillway - May 3rd			
2020	3DD.003D365664	The Dalles East Ladder - September 17th	Lower Granite - September 29th		Lower Granite Spillway - May 7th			
2020	3DD.003D3659E1	The Dalles East Ladder - September 28th	Lower Granite - October 9th		Lower Granite Spillway - April 17th			
2020	3DD.003D365626	The Dalles North Ladder - September 16th	Lower Granite - September 30th		Lower Granite Spillway - April 29th			
2020	3DD.003D3655D3	The Dalles North Ladder - September 12th	Lower Granite - October 11th		Lower Granite Spillway - April 29th			
2020	3DD.003D53AA4D		Lower Granite - September 25th		Lower Granite Spillway - May 17th			
2020	3DD.003D3656ED	The Dalles East Ladder - September 10th	Lower Granite - September 29th		Lower Granite Spillway - April 15th			
2020	3DD.003D3659F8	The Dalles East Ladder - August 8th	Lower Granite - September 17th		Lower Granite Spillway - May 15th			
2020	3DD.003D6316BA	The John Day South Ladder - October 6th	Lower Granite - October 16th		Upper Salmon - April 4th Lower Granite Spillway - May 7th			
2020	3DD.0077A2F97F	The Dalles East Ladder - August 26th	Lower Granite - September 12th		Upper Salmon - March 28th Lower Granite Spillway -			
2020	3DD.003D53AFA1	The Dalles East Ladder - July 23rd	Little Goose - November 25th	Lower Granite - December 31st	May 9th Upper Grande Ronde - March 5th Lower Granite Spillway -			
2020	3DD.003D365AE4	The Dalles East Ladder -	Lower Granite - September		April 29th Lower Granite Spillway -			
2020	3DD.003D53EE07	August 6th The Dalles East Ladder - September 27th	29th Lower Granite - October 10th		April 18th Lower Selway (Clearwater) - March 17th Lower Granite Spillway -			
2020	3DD.003D3656AA	The Dalles East Ladder - September 9th	Lower Granite - October 19th		May 17th Upper Lochsa (Clearwater) - March 28th Lower Granite Spillway -			
2020	3DD.003D53EF40	The Dalles North Ladder - September 26th	Lower Granite - October 7th		May 19th Upper Lochsa (Clearwater) - March 23rd Lower Granite Spillway -			
2020	3DD.003D365735	The Dalles North Ladder - September 13th	Lower Granite - September 28th		May 16th Upper Lochsa (Clearwater) - March 28th Lower Granite Spillway -			
2020	3DD.003D53ECA7	The Dalles East Ladder -	Lower Granite - October 4th	Lower SF Clearwater -	May 24th Lower Granite Spillway -			
2020	355.0035332CA7	September 20th	Lower Granite October 401	February 27th	May 1st Upper Salmon - April 2nd			
2020	3DD.003D365B8D	The Dalles East Ladder - October 1st	Lower Granite - October 14th		Yankee Fork (Salmon) - April 14th to 26th Upper Salmon - May 1st Lower Granite Spillway - May 9th			
2020	3DD.003D365AD7	The Dalles North Ladder - August 31st	Lower Granite - September 12th		Yankee Fork (Salmon) - April 19th Lower Granite Spillway - May 21st			
2020	3DD.003D365A69	The Dalles East Ladder - September 9th	Lower Granite - September 20th		Joseph Creek (Grande Ronde) - March 17th Joseph Creek (Grande Ronde) - April 14th Lower Granite Spillway - April 27th			
2020	3DD.003DA24FAD	The Dalles North Ladder - August 1st	Lower Granite - October 30th		Joseph Creek (Grande Ronde) - March 5th Joseph Creek (Grande Ronde) - March 22nd Lower Granite Spillway - April 7th			
2020	3DD.003D53B202	The Dalles East Ladder -July 26th	Lower Granite - August 27th		Wenaha River (Grande Ronde) - March 19th to April 30th Lower Granite Spillway - May 19th Wallowa (Grande Ronde) -			
2020	3DD.003D53B205	The Dalles East Ladder - September 26th	Lower Granite - October 8th		March 24th Minam (Grande Ronde) - March 24th to April 21st Lower Granite Spillway - May 1st Lower Asotin Creek - April			
2020	3DD.003D53EE6F	The Dalles East Ladder - September 30th	Lower Granite - October 18th		1st Lower Asotin Creek - April 8th Lower Granite Spillway - April 14th			
2020	3DD.003D365763	The Dalles East Ladder - September 11th	Lower Granite - October 6th		EF Salmon - April 5th EF SF Salmon - April 24th Lower Granite Spillway - May 23rd			
2020	3DD.003D53A9EC	The Dalles North Ladder - July 31st	Lower Granite - October 1st		Lower Wallowa (Grande Ronde) - April 30th Lower Minam (Grande Ronde) - May 1st Lower Granite Spillway - May 29th Lower Asotin Creek - March			
2020	3DD.003D365A7D	The Dalles East Ladder - September 30th	Lower Granite - October 7th		21st Lower Asotin Creek - April 6th Lower Granite Spillway - April 26th			
2020	3DD.003D53EF53	The Dalles East Ladder - October 3rd			John Day - March 13th Lower Granite) - March 22nd Lower Granite Spillway - April 16th			Steelhead spent many months between The Dallas and John Day dams before making a run for the Snake in March, 2021.
2020	3DD.003D365A09	The Dalles East Ladder - August 31st	Lower Granite - September 19th		Lower Granite Spillway - May 17th			
2020	3DD.003D3655D2	The Dalles East Ladder - August 19th	Lower Granite - September 4th		Lower Granite Spillway - May 28th			
2020	3DD.003D365A6F	The Dalles East Ladder - August 14th	Lower Methow River - September 24th		Wells Juvenile Bypass - April 19th			
2020	3DD.003DA24FDC	The Dalles East Ladder - August 24th	Lower Okanagan - October 4th		Omak Creek (Okanagan) - March 20th to April 6th Rocky Reach Juvenile Bypass - April 30th			

Part	Table C2 (Con	tinued).							
March Marc	Tag Year	Tag Number		Fall 2020	Winter 2020/21	Spring 2021	Summer 2021	Fall 2021	Comments
March Marc	2020	3DD.003D53A977		Wells Juvenile Bypass-					
Mathematical Math	2020	3DD.003D3656AF				19th to April 14th Rocky Reach Juvenile Bypass			
March Marc	2020	3DD.003D365AA5		Wells - August 23rd		Rocky Reach Juvenile Bypass			
A	2020	3DD.003D53AFB7	The Dalles East Ladder - July 26th	Wells - November 17th		Lower Methow - April 15th Rocky Reach Juvenile Bypass - April 30th			
Part	2020	3DD.003D53B13C	The Dalles East Ladder - July 21st	Wells - August 7th		18th Cheech River (Methow) - April 3rd to 12th Rocky Reach Juvenile Bypass			
Page	2020	3DD.003D53ADF2		Wells - September 27th		Beaver Creek (Methow) - April 19th to May 9th Rocky Reach Juvenile Bypass			
Part	2020	3DD.003D53AAC7	The Dalles East Ladder - July 4th	Wells - July 25th		Wildhorse Creek (Okanagan) - April 4th to 21st Rocky Reach Juvenile Bypass			
18	2020	3DD.003D53A981	The Dalles East Ladder - July 23rd	Wells - August 15th		9th Rocky Reach Juvenile Bypass			
Part	2020	3DD.003D6319E1				March 30th Lower Toppenish (Yakima) - April 27th			
Part	2020	3DD.003D53B200				March 2nd Lower Satus (Yakima) - April 13th			
100 100	2020	3DD.003D365AA4				March 17th Lower Satus (Yakima) - April 7th			
Part	2020	3DD.003D3659F6		McNary - August 22nd		March 9th Middle Satus (Yakima) - April 14th Lower Satus (Yakima) - April			
200	2020	3DD.003DA24F9D				Lower Chewaukum Creek (Wenatchee) - April 6th Lower Chewaukum Creek (Wenatchee) - May 5th			
100 100	2020	3DD.003D365A3A				March 6th Mission Creek (Wenatchee) -			
1979 1970	2020	3DD.003D53B1DE		Wells - September 11th					
2-20	2020	3DD.003DA24FD2		Wells - August 29th		Twisp (Methow) - March 28th to April 4th			
200 300.00015440E 75 days 150.00015440E 75 day	2020	3DD.003D365AC3		-		April 16th Lower Ninemile Creek (Okanagan) - April 18th Lower Ninemile Creek			
April	2020	3DD.003D53AE0E	The Dalles East Ladder - July 31st	McNary - November 13th		April 8th Three Mile Dam (Umatilla) -			
200 200 000000000000000000000000000	2020	3DD.003D53AE0C				May 6th			
### Processed Bonk Control And Processed Bonk Co	2020	3DD.003D3659B6		John Day - September 24th		March 23rd Threemile Dam (Umatilla) - May 6th			
2000 300,0000369000 The Dalles East Ladder - August 33th Molary - Catober 23th Molary - Cato	2020	3DD.003D365AB3		Umatilla - October 22nd	December 23rd	March 9th Threemile Dam (Umatilla) - March 21st			
2000 200 0000036962 The Dalles East Ladder July 200 00000369600 The Dalles East Ladder July 200 000000000369600 The Dalles East Ladder July 200 000000369600 The Dalles East Ladder July 200 000000000000000000000000000000000	2020	3DD.003D3659BC		McNary - September 24th	Walla) - January 3rd Upper Touchet (Walla	Walla) - March 21st Lower Touchet (Walla Walla) - April 13th			
### The Dalles North Ladder October 22nd Code	2020	3DD.003D3659C2		McNary - October 22nd		Walla) - March 2nd Upper Touchet (Walla Walla) - March 10th Lower Touchet (Walla Walla) - April 3rd			
2020 3DD_003053ADCC The Dalles East Ladder - July 20th Ce Harbor - October 21st Upper Touchet (Walla Walla) - March 25th to April 5th	2020	3DD.003D3655FB		McNary - October 22nd		Walla) - March 2rd Upper Touchet (Walla Walla) - March 8th to April 1st Lower Touchet (Walla Walla) - April 21st			
The Dalles East Ladder- June 26th The Dalles East Ladder- June 26th November 22nd The Dalles East Ladder- September 25th The Dalles East Ladder- September 11th Cotober 10th Lower Monumental- September 25th Lower Monumental- September 25th Lower Monumental- September 25th Lower Touchet (Walla Walla)- September 11th Lower Touchet (Walla	2020	3DD.003D53ADCC	The Dalles East Ladder - July 20th	Ice Harbor - October 21st		March 20th Upper Touchet (Walla Walla) - March 25th to April 5th Lower Touchet (Walla Walla			
The Dalles East Ladder-September 28th McNary - September 28th McNary - September 28th Lower Walla Walla - March 3rd Walla) - March 3rd Walla) - March 26th Middle Touchet (Walla Walla) - March 26th Middle Touchet (Walla Walla) - March 26th Middle Touchet (Walla Walla) - April 18th Lower Touchet (Walla Walla) - April 18th Lower Touchet (Walla Walla) - April 18th Upper Touchet (Walla Walla) - March 26th Walla) - March 26th Walla) - March 26th Walla) - March 18th Upper Touchet (Walla Walla) - May 18th Lower Touchet (Walla Walla) - March 15th Upper Touchet (Walla Walla) - March 29th Lower Touchet (Walla	2020	3DD.003D53A8EB				Lower Monumental - March 19th Middle Touchet (Walla Walla) - April 5th Upper Touchet (Walla Walla) - April 13th Middle Touchet (Walla			
2020 3DD.003DA24FCE The Dalles East Ladder-August 23rd Lower Monumental - November 26th Little Goose - December 1st Uttle Goose - December 1st Uttle Goose - December 1st Uttle Goose - December 1st Upper Touchet (Walla Walla) - May 18th Lower Touchet (Walla Walla) - May 18th Lower Touchet (Walla Walla) - May 18th Upper Touchet (Walla Walla) - March 15th Upper Touchet (Walla Walla) - March 15th Upper Touchet (Walla Walla) - March 15th Upper Touchet (Walla Walla) - March 19th Upper Touc	2020	3DD.003D3658CB		McNary - September 28th		Lower Touchet (Walla Walla) - March 3rd Upper Touchet (Walla Walla) - March 26th Middle Touchet (Walla Walla) - April 18th			
2020 3DD.003D36580E The Dalles East Ladder - September 11th Lower Monumental - October 10th Lower Touchet (Walla Walla) - March 15th Upper Touchet (Walla Walla) - March 15th Upper Touchet (Walla Walla) - March 29th Lower Touchet (Walla Walla)	2020	3DD.003DA24FCE			Little Goose - December 1st	Walla) - April 13th Upper Touchet (Walla Walla) - May 14th Lower Touchet (Walla			
IWallat - April 2th	2020	3DD.003D365B0E				Lower Touchet (Walla Walla) - March 15th Upper Touchet (Walla Walla) -March 29th			

Table C2 (Cor	ntinued).							
Tag Year	Tag Number	First Detection After Tagging 2020 in All Seasons	Fall 2020	Winter 2020/21	Spring 2021	Summer 2021	Fall 2021	Comments
2020	3DD.003D631921	The Dalles East Ladder - October 18th	McNary - October 22nd		Lower Touchet (Walla Walla) - March 5th Upper Touchet (Walla Walla) - April 3rd to 16th Lower Touchet (Walla			
	3DD.003D53AE0D	John Day - October 7th	Lower Granite Spillway - November 15th		Walia) - April 24th Lower Touchet (Walla Walia) - April 4th Upper Touchet (Walla Walia) - April 18th Lower Touchet (Walla Walla) - April 23rd			
2020	3DD.003D53B209	The Dalles North Ladder - July 26th			Lower Touchet (Walla Walla) - March 16th Upper Touchet (Walla Walla) - March 26th to April 19th Lower Touchet (Walla			
2020	3DD.00776669B4	The Dalles East Ladder - September 10th	Little Goose - October 20th		Walla) - April 20th Lower Tucannon - March 18th Upper Tucannon - March 27th to April 18th Lower Tucannon - April 22nd			
2020	3DD.003D3656D8	The Dalles East Ladder - September 18th	Lower Granite - October 24th		Lower Tucannon - March 9th Upper Tucannon - March 24th Lower Tucannon - April 13th			
2020	3DD.003D3659D0	The Dalles East Ladder - August 8th	Lower Granite - September 21st		Lower Tucannon - March 7th Upper Tucannon - March 21st Lower Tucannon - April 4th			
2020	3DD.003D365AAE	The Dalles East Ladder - September 11th	John Day - October 14th	John Day - January 16th Lower Monumental - February 4th	Little Goose - March 6th Lower Tucannon - March 16th Panjab Creek (Tucannon) - April 22nd to May 13th Lower Tucannon - May 19th			
2020	3DD.003D6318F8	The Dalles East Ladder - October 21st		reutualy 4(1)	John Day - March 28th Lower Monumental - April 25th Lower Tucannon - March 1st to 31st Lower Tucannon - April 1st			This steelhead was tagged on October 14th, 2020 unknown where it was between October, 2020 and March 2021.
2020	3DD.003D53EF2C	The Dalles East Ladder - September 25th			The Dalles East Ladder - March 20th Lower Monumental - March 31st Lower Tucannon - April 3rd Lower Tucannon - April 11th			This steelhead was tagged on September 22nd, 2020 unknown where it was between September, 2020 and March 2021.
2020	3DD.003D365BD1	The Dalles East Ladder - September 6th			The Dalles East Ladder - March 15th Lower Monumental - March 21st Lower Tucannon - March 22nd Middle Tucannon - March 23rd to April 1st Lower Tucannon - April 2nd			This steelhead was tagged on September 3rd, 2020 unknown where it was between September, 2020 and March 2021.
2020	3DD.003D3656D7	The Dalles North Ladder - August 21st	Lower Granite - October 25th	Lower Tucannon - February 23rd	Middle Tucannon - March 1st to 31st			
2020	3DD.003D53AC0D	The Dalles East Ladder - August 4th	Lower Granite - September 12th		Lower Tucannon - April 1st Lower Asotin - March 20th Upper Asotin - March 29th to April 13th Lower Asotin - April 22nd			
2020	3DD.003D631A2F	The Dalles East Ladder - October 9th	Lower Granite - October 20th		Lower SF Clearwater - March 15th Lower SF Clearwater - May			
2020	3DD.003D53EE98	The Dalles East Ladder - October 1st	Lower Granite - October 25th		25th Lower SF Clearwater - March 3rd Lower SF Clearwater - April			
2020	3DD.003D36571E	The Dalles North Ladder - October 21st	The Dalles North Ladder - November 2nd		14th Bonneville - March 14th Lower Granite - March 24th Lower SF Clearwater - March 29th Lower SF Clearwater - April 22nd			This steelhead was tagged on August 26th, 2020 and had several fall back events passing Bonneville and The Dalles dams more then once. Also unknown where it was between November, 2020 and March 2021.
2020	3DD.003DA24FAA	The Dalles East Ladder - September 3rd	Lower Granite - October 3rd		Lower Lochsa (Clearwater) - March 18th Upper Lochsa (Clearwater) - March 18th to May 21st Upper Lochsa (Clearwater) - May 14th			
2020	3DD.003D365757	The Dalles East Ladder - September 10th	Lower Granite - October 1st		Lower Selway (Clearwater) - March 15th Upper Selway (Clearwater) - March 16th to May 21st Lower Lochsa (Clearwater) - May 27th			
2020	3DD.003D365800	The Dalles East Ladder - October 14th	Lower Granite - October 25th		Lower Selway (Clearwater) - March 7th Lower Selway (Clearwater) - April 30th			
2020	3DD.003D53EF07	The Dalles East Ladder - September 20th		The Dalles North Ladder - December 26th Lower Monumental - February 4th	Little Goose - March 8th Lower Lolo Creek (Clearwater) - April 2nd Upper Lolo Creek (Clearwater) - April 2nd to 30th Lower Lolo Creek (Clearwater) - May 1st			This steelhead was tagged on September 18th, 2020, unknown where it was between September, 2020 and December 2020.
2020	3DD.003D53AA4F	The Dalles North Ladder - August 17th	Lower Granite - September 29th		Lapwai Creek (Clearwater) - March 20th Lapwai Creek (Clearwater) -			
2020	3DD.003D365AD3	The Dalles East Ladder - August 2nd	Lower Granite - September 15th	Lower Wallowa (Grande Ronde) - February 23rd	April 29th Lower Wallowa (Grande Ronde) - May 30th			
2020	3DD.003D365AEB	The Dalles North Ladder - August 25th	Lower Granite - October 19th		Lower Wallowa (Grande Ronde) - April 28th	Lower Wallowa (Grande Ronde) - June 2nd		
2020	3DD.003D365A20	The Dalles East Ladder - August 14th			John Day - March 8th Lower Granite - March 27th Lower Wallowa (Grande Ronde) - April 29th Lower Wallowa (Grande Ronde) - May 29th			Unknown where this steelhead was between August 2020 and March 2021, between The Dalles and John Day dams.

able C2 (Co	ininueu).	First Detection of						
Tag Year	Tag Number	First Detection After Tagging 2020 in All Seasons	Fall 2020	Winter 2020/21	Spring 2021	Summer 2021	Fall 2021	Comments
					Lower Tucannon - March 6th			
					Lower Monumental - March			
2020	200 0020255727	The Dalles East Ladder -	NA-NI Contambra 10th	Lower Monumental -	26th			Unknown where this steelhead was between
2020	3DD.003D365737	August 28th	McNary - September 10th	December 14th	Lower Granite - March 31st			September 2020 and December 2020, between McNan and Ice Harbor dams.
					Lower Wallowa (Grande Ronde) - April 16th			
					Lower Wallowa (Grande Ronde) - April 23rd			
		71 0 11 5 11 11			Middle Wallowa (Grande			
2020	3DD.003D3659C1	The Dalles East Ladder - September 29th	Lower Granite - October 15th		Ronde) - May 5th to 24th Lower Wallowa (Grande			
					Ronde) - May 24th Lower Wallowa (Grande			
					Ronde) - March 19th			
2020	3DD.003D53AF91	The Dalles East Ladder - July			Middle Wallowa (Grande			
2020	355.003533A131	23rd			Ronde) - March 20th to 29th			
					Lower Wallowa (Grande			
					Ronde) - April 26th Middle Wallowa (Grande			
		The Dalles East Ladder - July			Ronde) - March 22nd Upper Minam (Grande			
2020	3DD.003D53ADDD	17th	Lower Granite - August 5th		Ronde) - April 4th			
					Lower Wallowa (Grande Ronde) - April 14th			
2020	3DD.003D3655D6	The Dalles East Ladder - August 30th	Lower Wallowa (Grande Ronde - September 29th		Lower Wallowa (Grande Ronde) - May 19th			
2020	3DD.003DA24FC9	The Dalles North Ladder -	Lower Granite - October	Joseph Creek (Grande	Joseph Creek (Grande			
		September 25th	27th	Ronde) - February 25th	Ronde) - April 4th Joseph Creek (Grande			
2020	3DD.003D53AE3C	The Dalles East Ladder - August 3rd	Lower Granite - September 25th		Ronde) - March 20th			
		August Siu	23(11		Joseph Creek (Grande Ronde) - April 18th			
		The Dalles North Ladder -			Joseph Creek (Grande Ronde) - March 4th			
2020	3DD.003DA24FCA	August 15th	Lower Granite - October 3rd		Joseph Creek (Grande			
					Ronde) - April 28th Joseph Creek (Grande			
2020	3DD.003D53AF22	The Dalles North Ladder - July 13th	Lower Granite - October 13th		Ronde) - March 4th Joseph Creek (Grande			
		,			Ronde) - April 9th	V 1 5 1 (5 1) 1		
2020	3DD.003D365A08	The Dalles East Ladder -	Lower Granite - October 3rd		Upper Salmon - March 18th	Yankee Fork (Salmon) - June 1st		
2020	3DD.003D303A08	September 25th	Lower Granite - October 3rd		Yankee Fork (Salmon) - April 27th to May 31st	Upper Salmon - June 3rd		
		71 0 11 5 11 11				Middle Lemhi River		
2020	3DD.003DA24FB8	The Dalles East Ladder - September 4th	Lower Granite - September 21st		Lower Lemhi River (Salmon) May 12th	(Salmon) - June 1st Lower Lemhi River (Salmon)		
		The Dalles East Ladder - July	Lower Granite - September		Lower Lemhi River (Salmon)	- June 15th Lower Lemhi River (Salmon)		
2020	3DD.0077BB89FA	25th	8th		May 1st	- June 30th		
					Lower Lemhi River (Salmon) April 5th			
2020	3DD.003DA24FE5	The Dalles East Ladder - September 20th	Lower Granite - October 5th		Middle Lemhi River (Salmon) - May 12th			
					Lower Lemhi River (Salmon)			
					May 21st Lower Imnaha - April 4th			
		The Dalles North Ladder -	Lower Granite - October		Grouse Creek (Imnaha) -			
2020	3DD.003D6318DC	October 15th	25th		April 28th to May 21st			
					Lower Imnaha - May 23rd			
					Roza Dam (Yakima) - April			Steelhead recaptured at Bonneville AFF on July 27th, 2020. Steelhead was recaptured/retained on May 14th,
2020	3DD.003D53AE1E	The Dalles East Ladder - October 1st	Prosser Dam (Yakima) - October 12th		15th Prosser Dam (Yakima) - May			2021 at Prosser Dam by CRITFC Kelt Project. Released to
					14th			spawn on Oct 28, 2021 in Yakima River. Considered a kelt, by Kelt Project.
					Lower Satus (Yakima) -			Steelhead tagged at Bonneville AFF on July 28th, 2020. Steelhead was recaptured/retained on April 12th, 2021
2020	3DD.003D53A9E7	The Dalles East Ladder - July 30th	Prosser Dam (Yakima) - October 7th	Lower Satus (Yakima) - January 15th	March 19th Prosser Dam (Yakima) - April		Prosser Dam (Yakima) - October 29th	at Prosser Dam by CRITFC Kelt Project. Released to
					12th			spawn on Oct 28, 2021 in Yakima River. Considered a kelt, by Kelt Project.
					Roza Dam (Yakima) - April 6th			Steelhead tagged at Bonneville AFF on August 20th 202
2020	3DD.003D3656F0	The Dalles East Ladder -	Prosser Dam (Yakima) -		Wenas Creek (Yakima) -			Steelhead was recaptured/retained on April 23rd, 2021
		August 22nd	November 6th		April 8th to 20th Prosser Dam (Yakima) -			at Prosser Dam by CRITFC Kelt Project. Considered a kel by Kelt Project.
					April 23rd			
					Lower Satus (Yakima) - March 6th			Steelhead tagged at Bonneville AFF on August 3rd, 2020
2020	3DD.003D365A85	The Dalles East Ladder - August 5th	Prosser Dam (Yakima) - October 9th		Lower Satus (Yakima) - April 11th			Steelhead was recaptured/retained on April 15th, 2021 at Prosser Dam by CRITFC Kelt Project. Considered a kel
					Prosser Dam (Yakima) -			by Kelt Project.
					April 15th Lower Satus (Yakima) -			
		The Dalles East Ladder -	Prosser Dam (Yakima) -		March 17th Lower Satus (Yakima) - April			Steelhead tagged at Bonneville AFF on August 4th, 202 Steelhead was recaptured/retained on April 15th, 2021
2020	3DD.003D365AE6	August 10th	October 2nd		11th			at Prosser Dam by CRITFC Kelt Project. Considered a ke
					Prosser Dam (Yakima) - April 15th			by Kelt Project.
					Lower Satus (Yakima) - March 4th			Steelhead tagged at Bonneville AFF on July 17th, 2020.
2020	3DD.003D53B13B	The Dalles East Ladder - July	Prosser Dam (Yakima) -	Lower Satus (Yakima) -	Lower Satus (Yakima) - April	1		Steelhead was recaptured/retained on April 19th, 2021 at Prosser Dam by CRITFC Kelt Project. Released to
		1st	October 1st	January 17th	17th Prosser Dam (Yakima) -			spawn on Oct 28, 2021 below Bonneville. Considered a
					April 19th			kelt, by Kelt Project.
					Prosser Dam (Yakima) - March 25th			
2022	200 00000	The Dalles East Ladder -	Priest Rapids - September		Lower Satus (Yakima) - March 30th			Steelhead tagged at Bonneville AFF on July 29th, 2020. Steelhead was recaptured/retained on April 29th, 2021
2020	3DD.003D53AC36	September 1st	16th		Lower Satus (Yakima) - April			at Prosser Dam by CRITFC Kelt Project. Considered a kel by Kelt Project.
					26th Prosser Dam (Yakima) - April			by Neit Pioject.
					29th	I	1	

Table C3. Season by season activities of steelhead tagged in 2020 and later labeled as kelts or repeat spawners when they began migrating downstream (before April 1st) and upstream in spring, summer, or fall 2021, presumably to and from the ocean.

Tag Year	Tag Number	First Detection After Tagging 2020 in Spring/Summer/Fall	Fall 2020	Winter 2020/21	Spring 2021	Comments
2020	3DD.003D53ABFA	Bonneville Ladders - July 29th			Bonneville Corner Collector - March 18th	Steelhead tagged at Bonneville AFF on July 29th, 2020. Where is was between August and March is unknown.
2020	3DD.003D53EED4		Lower Granite - October 12th		Lower Granite Spillway - March 28th	
2020	3DD.003DA24FF0	The Dalles East Ladder - September 27th	Prosser Dam (Yakima) - October 5th	Lower Satus (Yakima) - February 22nd	Lower Satus (Yakima) - March 12th	
2020	3DD.003D365A65		Lower Granite - October 14th		Lower Granite Juvenile Bypass - March 24th Little Goose Juvenile Bypass- March 31st	
2020	3DD.003D3659FD	The Dalles East Ladder - September 12th	Little Goose - October 16th		Lower Tucannon - March 18th Middle Tucannon - March 20th to 27th Lower Tucannon - March 28th	
2020	3DD.003D53F029		Lower Granite - September 30th		Lower SF Clearwater - March 18th Lower SF Clearwater - March 28th	
2020	3DD.003D53AC12	The Dalles East Ladder - October 1st	Little Goose - October 21st		Middle Tucannon - March 8th Lower Tucannon - March 15th	
2020	3DD.003D365698	The Dalles East Ladder - September 13th	McNary - October 6th	Middle Touchet (Walla Walla) - January 13th	Upper Touchet (Walla Walla) - March 2nd Upper Touchet (Walla Walla) - March 24th	

Table C4. Season by season activities of steelhead tagged in past years 2019 and 2018 (year 2017 was checked, but no new movements from fish) and later labeled as kelts or repeat spawners when they began migrating downstream and upstream presumably to and from the ocean. Any new steelhead or steelhead with additional information from previous annual reports is included here as behavioral detections became available in 2019/20/21.

Downstream

Tag Year	Tag Number	First Detection After Tagging and Spring/Summer Following Year	Fall	Winter	Spring	Comments
		The Dalles North Ladder - September 15th, 2019	Lower Monumental - September 26th, 2019	Lower Tucannon - January 18th, 2020	Lower Tucannon - March 2nd, 2020	
2019	3DD.003D364C05			Middle Tucannon - January 28th to February 28th, 2020		Steelhead spawned in spring and then may have entered the ocean for a short period before heading back upriver.
			Lower Monumental - November 19th, 2020	Lower Tucannon - January 18th, 2021	Upper Tucannon - March 16th, 2021	Information added.
				Middle Tucannon - February 25th, 2021	Lower Tucannon - March 18th, 2021	
		The Dalles East Ladder - August 5th, 2019	McNary - September 27th, 2019			
2019	3DD.003D364A23		Bonneville - September 2nd, 2020			Steelhead may have spawned in spring and then entered the ocean for a short period before heading back upriver.
2019	3DD.003D304A23		McNary - September 10th, 2020			Information added.
				John Day - January 31st, 2021		
		The Dalles East Ladder - August 31st, 2019	Prosser Dam (Yakima) - October 23rd, 2019		Roza Dam (Yakima) - April 10th, 2020	Steelhead tagged at Bonneville AFF on August 28th, 2019. Steelhead was recaptured/retained on May 27th, 2019 at
2019	3DD.003D364AE9				Prosser Dam (Yakima) - May 27th, 2020	Prosser Dam by CRITFC Kelt Project. Released in the Yakima River on October 20th, 2020. Considered a kelt, by Kelt Projec
					Roza Dam (Yakima) - March 19th, 2021	Information added.
		Lower Klickitat - June 23rd, 2019		Little Klickitat - February 6th to 27th, 2020	Lower Klickitat - March 29th, 2020	Steelhead may have spawned in spring and then entered the
2019	3DD.0077C0C904	Bonneville - June 13th, 2021				ocean for a year before heading back upriver.
		Lower Klickitat - June 19th, 2021				
2019	3DD.003D3649DE	The Dalles East Ladder - July 22nd, 2019	25th, 2019		Rocky Reach Juvenile - April 2nd, 2020	This steelhead wandered around the middle Columbia and lower Snake rivers in April, 2020.
2013	300.0030304302	Bonneville - July 5th, 2021	Middle Okanagan - October 25th, 2021			New kelt.
2018	3DD.0077C049E9	The Dalles North Ladder - October 13th, 2018	Lower Granite - November 12th, 2018		Lower Granite Juvenile Bypass - May 12th, 2019	This steelhead was recaptured by CRITFC Kelt Project on May 13th, 2019 and released in the Snake River. Considered a kelt
2010	355.00776043E3		Lower Granite - November 12th, 2020		Lower Granite Spillway - May 29th, 2021	by Kelt Project. Information added.

Key - - - Upstream Downstream Spawning

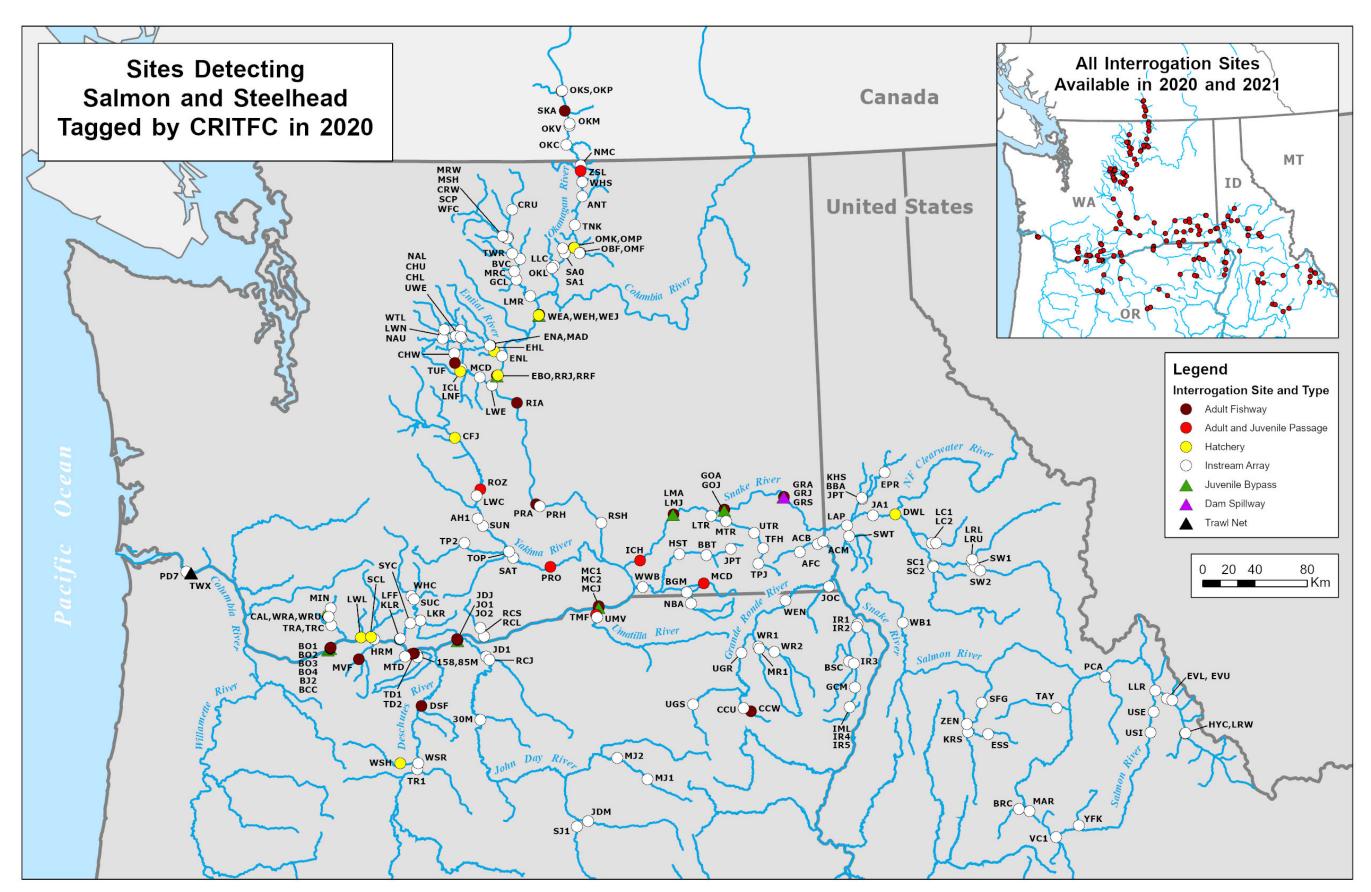


Figure C1. Map of Columbia River interrogation sites that detected Chinook and Sockeye salmon, and steelhead in 2020. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

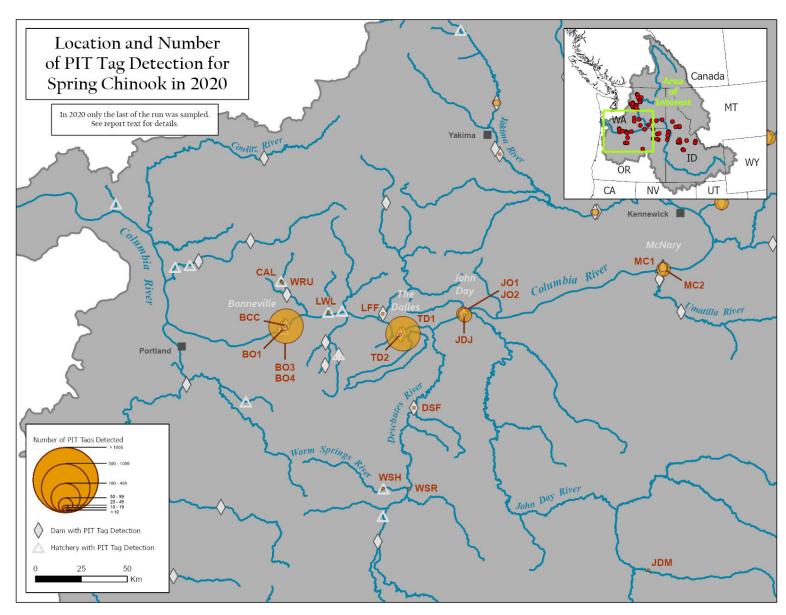


Figure C2. Map of Lower Columbia River detection sites (below Snake River) and number of spring Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Spring Chinook is defined as fish passing Bonneville Dam from January 1 to June 1.

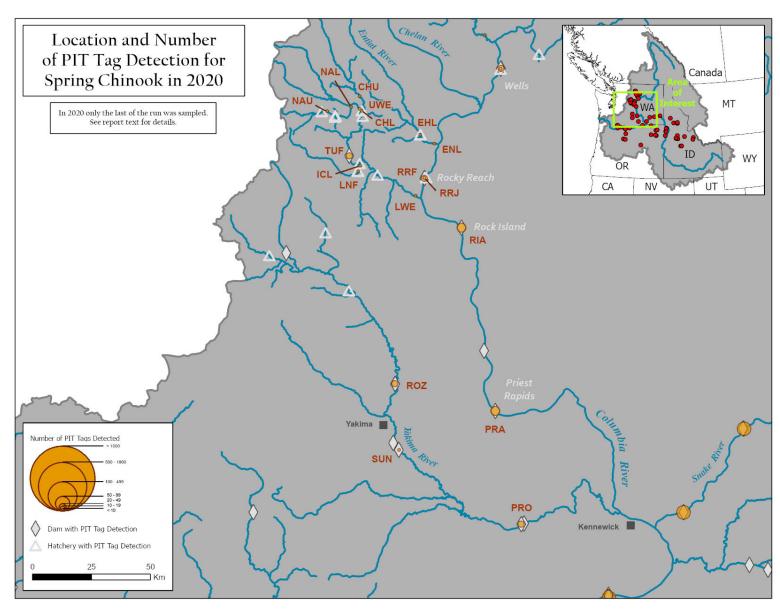


Figure C3. Map of Upper Columbia River (between the Snake River and Wells Dam) detection sites and number of spring Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Spring Chinook is defined as fish passing Bonneville Dam from January 1 to June 1.

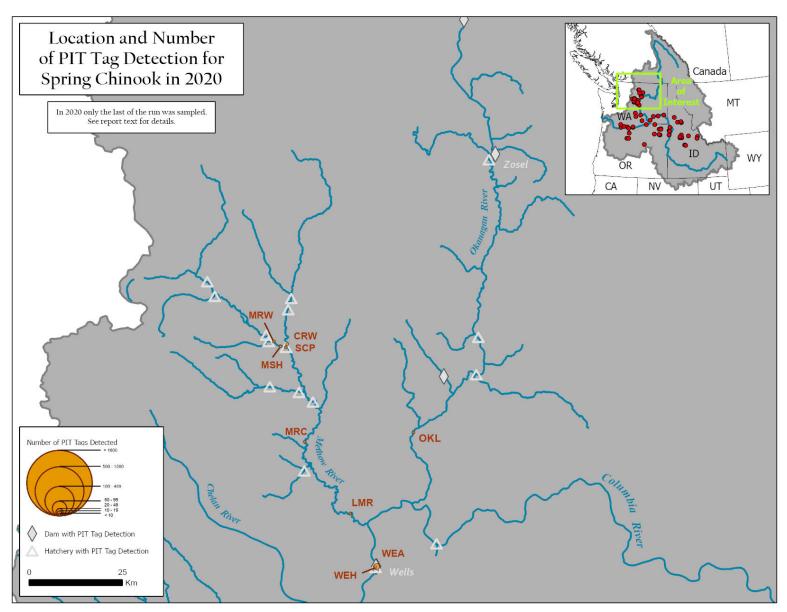


Figure C4. Map of Upper Columbia River (Wells Dam and above) detection sites and number of spring Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Spring Chinook is defined as fish passing Bonneville Dam from January 1 to June 1.

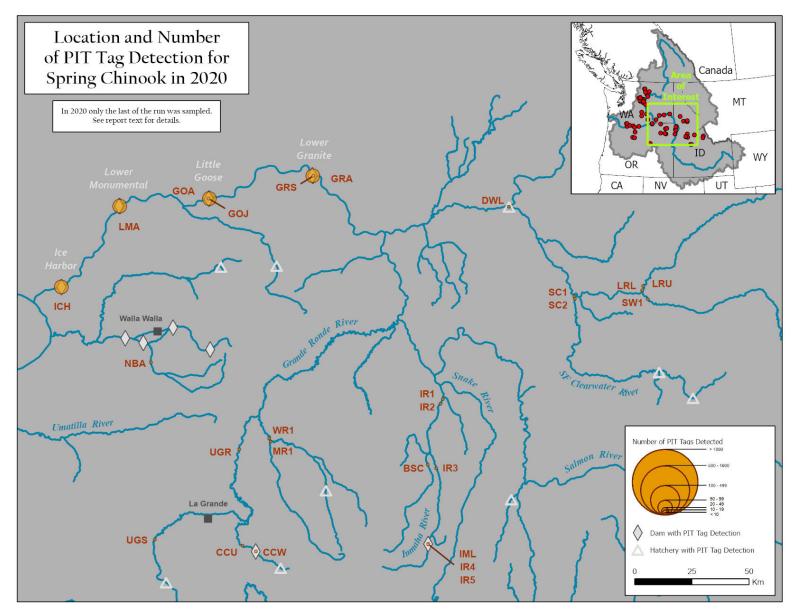


Figure C5. Map of Lower Snake River detection sites (Salmon River not included) and number of spring Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Spring Chinook is defined as fish passing Bonneville Dam from January 1 to June 1.

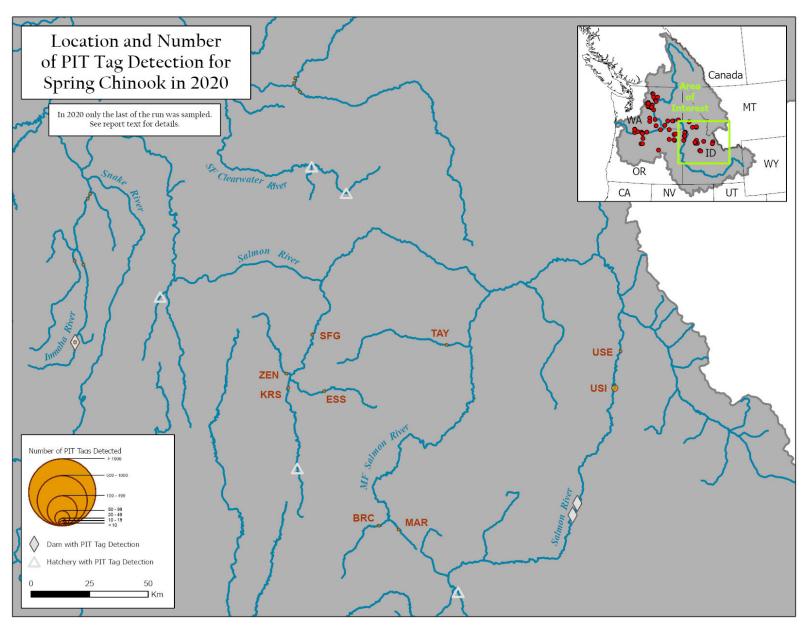


Figure C6. Map of Salmon River detection sites and number of spring Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Spring Chinook is defined as fish passing Bonneville Dam from January 1 to June 1.

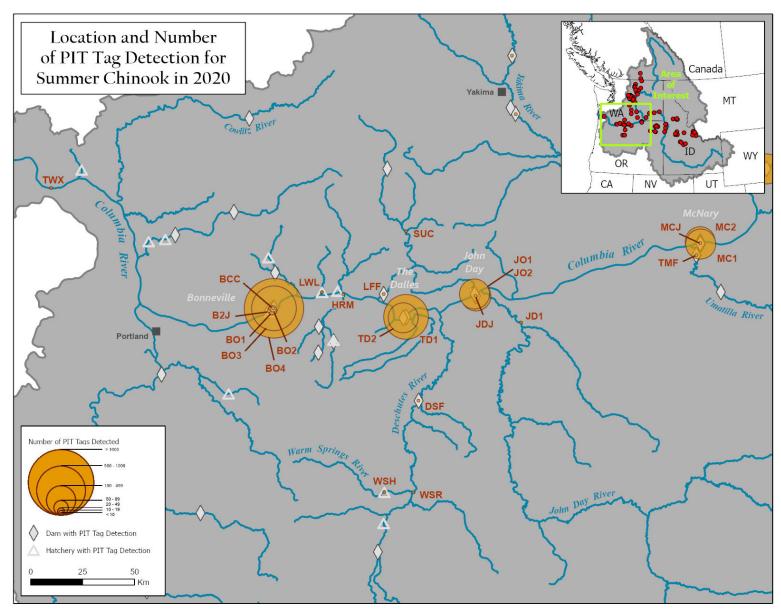


Figure C7. Map of Lower Columbia River detection sites (below Snake River) and number of summer Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Summer Chinook is defined as fish passing Bonneville Dam from June 1 to August 1.

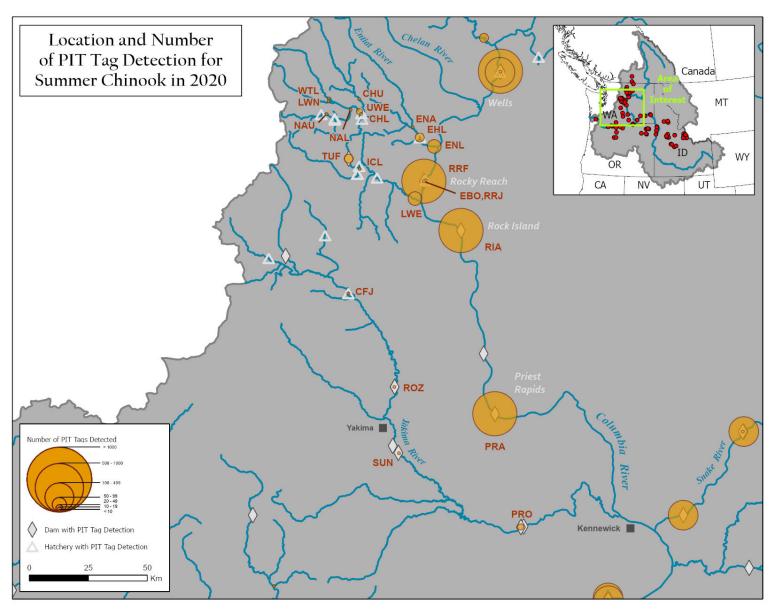


Figure C8. Map of Upper Columbia River (between the Snake River and Wells Dam) detection sites and number of summer Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Summer Chinook is defined as fish passing Bonneville Dam from June 1 to August 1.

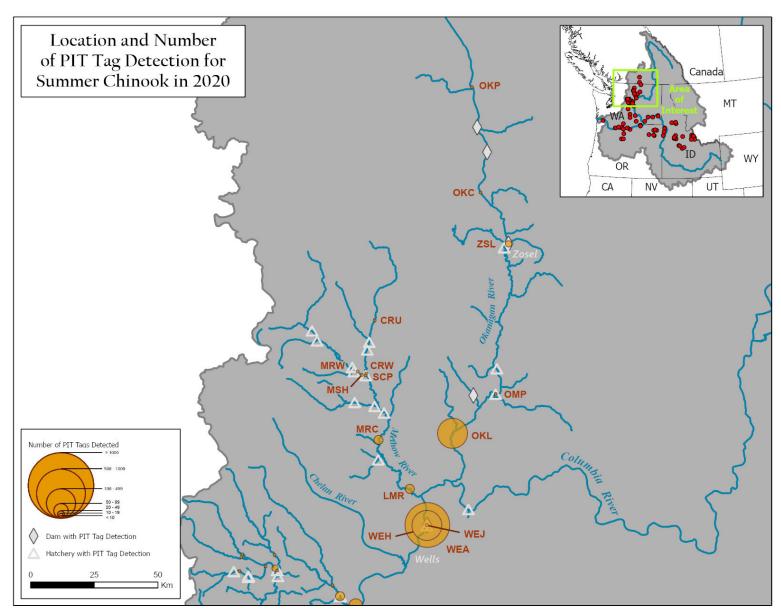


Figure C9. Map of Upper Columbia River (Wells Dam and above) detection sites and number of summer Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Summer Chinook is defined as fish passing Bonneville Dam from June 1 to August 1.

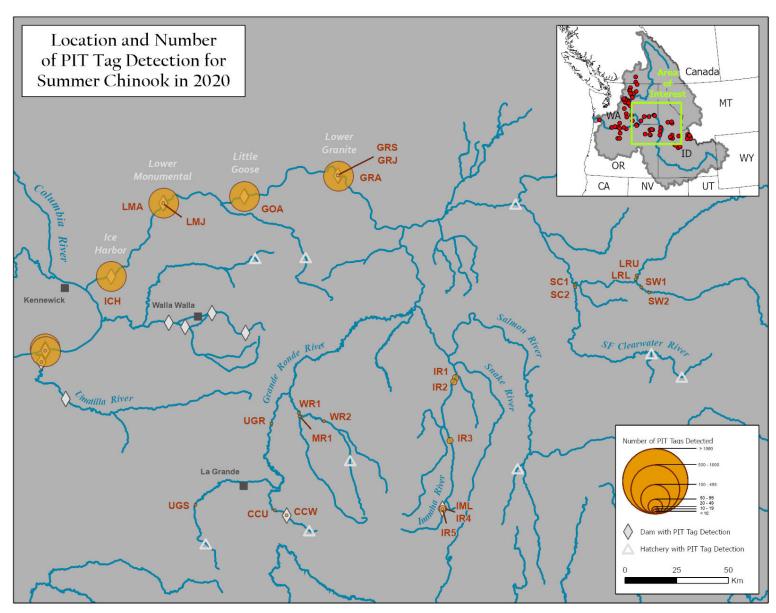


Figure C10. Map of Lower Snake River detection sites (Salmon River not included) and number of summer Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Summer Chinook is defined as fish passing Bonneville Dam from June 1 to August 1.

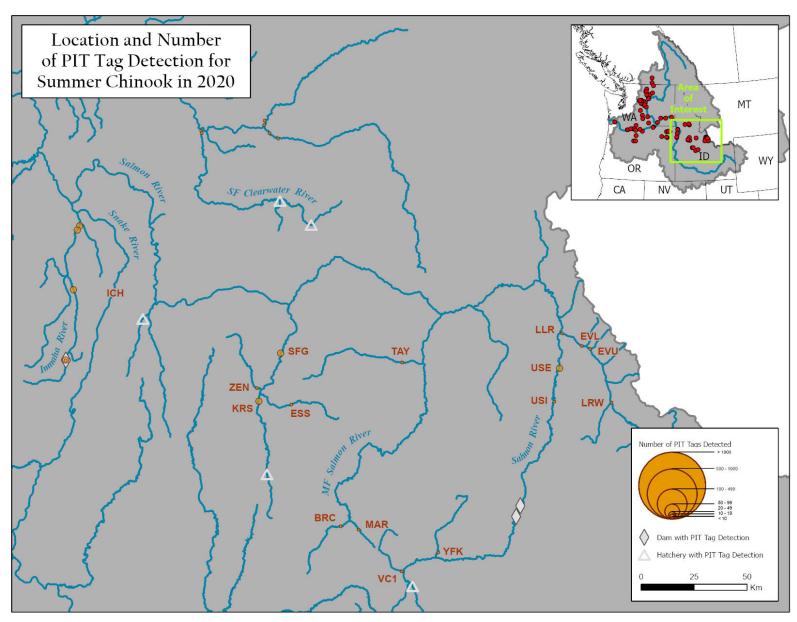


Figure C11. Map of Salmon River detection sites and number of summer Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Summer Chinook is defined as fish passing Bonneville Dam from June 1 to August 1.

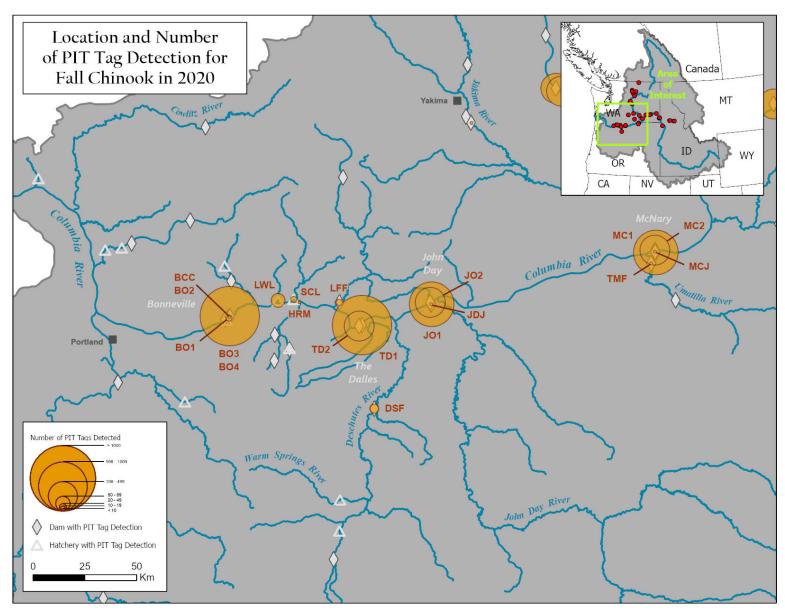


Figure C12. Map of Lower Columbia River detection sites (below Snake River) and number of fall Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Fall Chinook is defined as fish passing Bonneville Dam from August 1 to end of year.

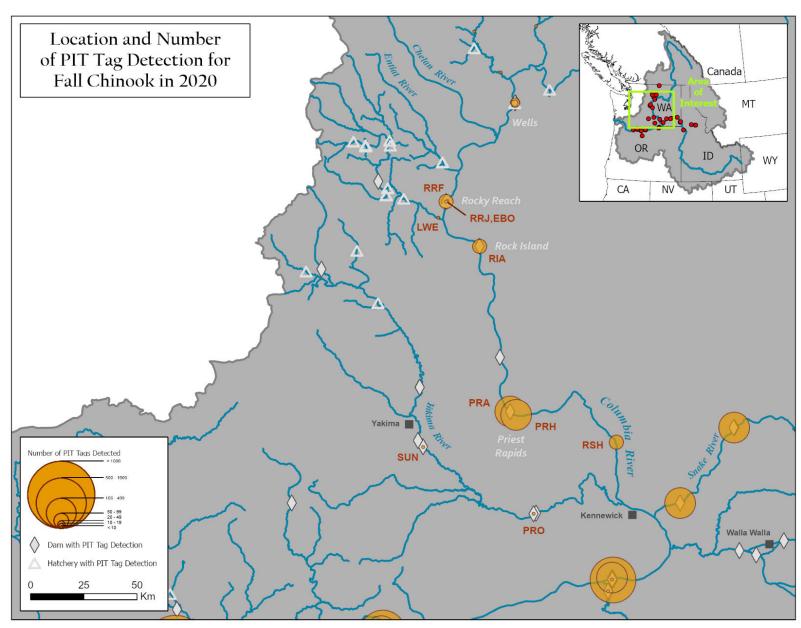


Figure C13. Map of Upper Columbia River (between the Snake River and Wells Dam) detection sites and number of fall Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

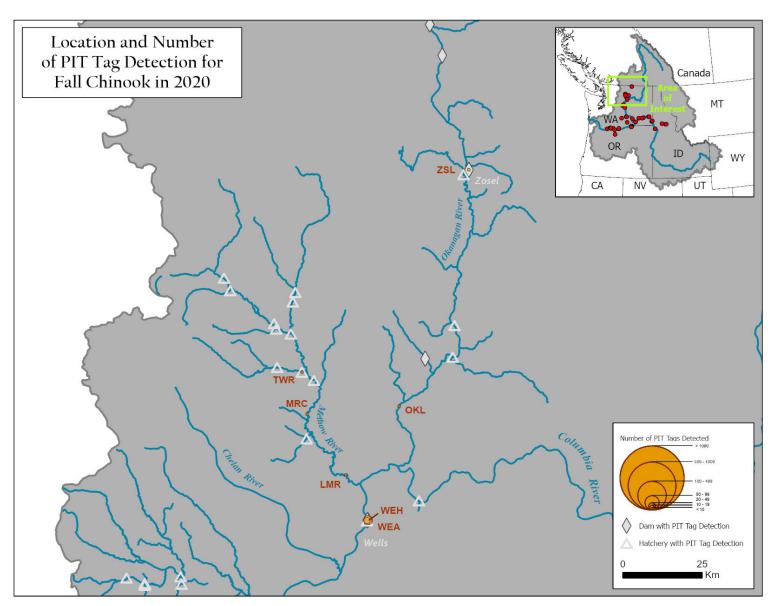


Figure C14. Map of Upper Columbia River detection sites (Wells Dam and above) and number of fall Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Fall Chinook is defined as fish passing Bonneville Dam from August 1 to end of year.

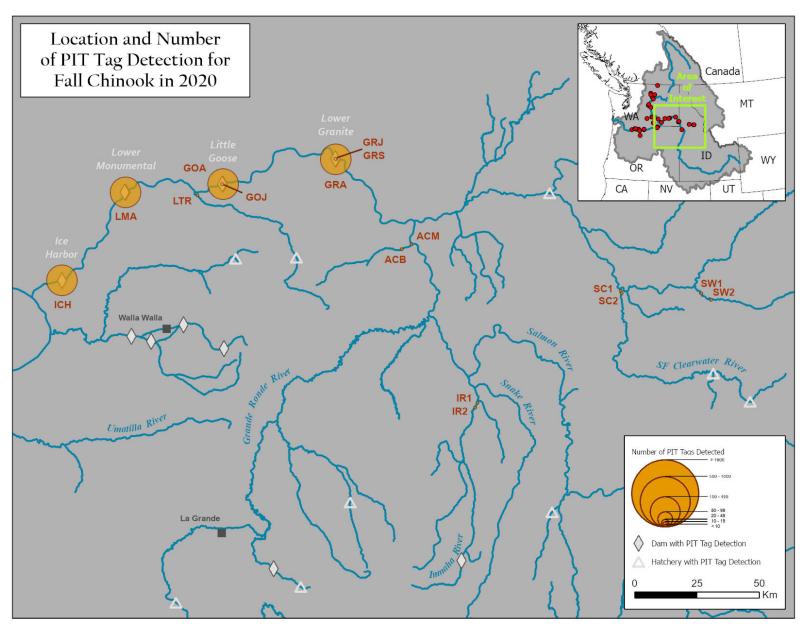


Figure C15. Map of Lower Snake River detection sites and number of fall Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Fall Chinook is defined as fish passing Bonneville Dam from August 1 to end of year.

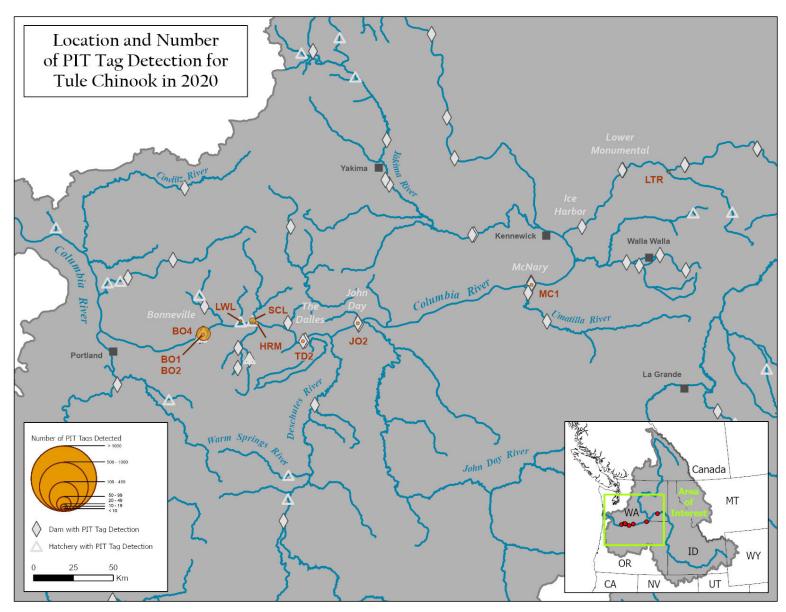


Figure C16. Map of Lower Columbia and Snake rivers detection sites and number of Tule fall Chinook Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map. Tule Chinook are defined as dark spawning mature fish passing Bonneville Dam near the end of the Chinook run.

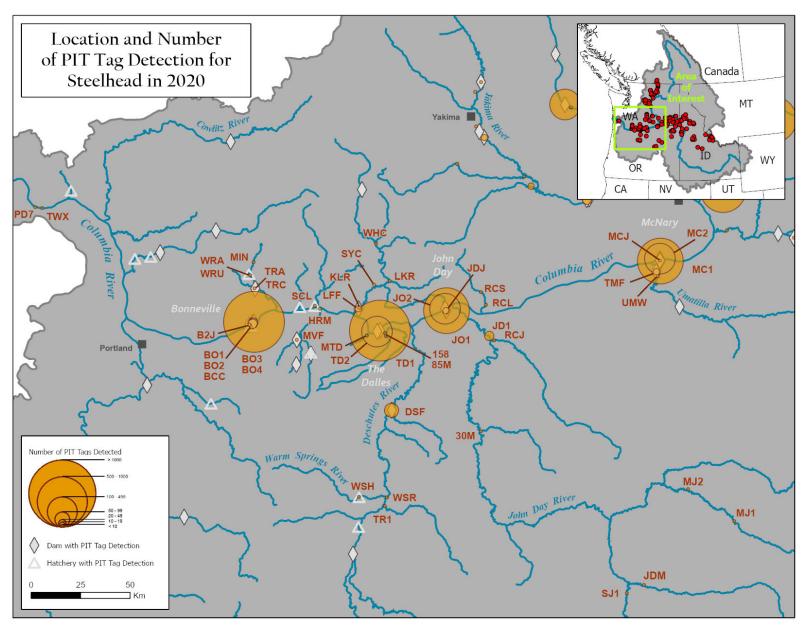


Figure C17. Map of Lower Columbia River detection sites (below Snake River) and number of steelhead detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

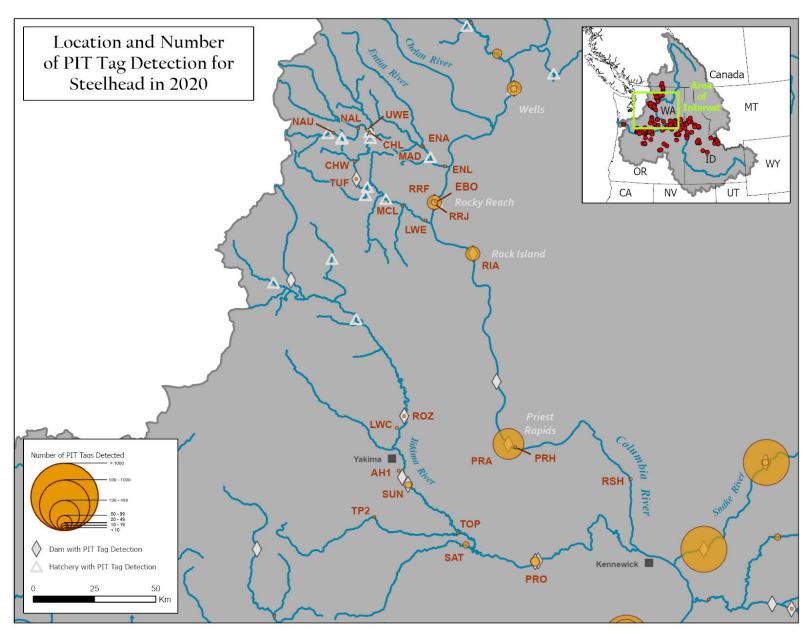


Figure C18. Map of Upper Columbia River (between the Snake River and Wells Dam) detection sites and number of steelhead detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

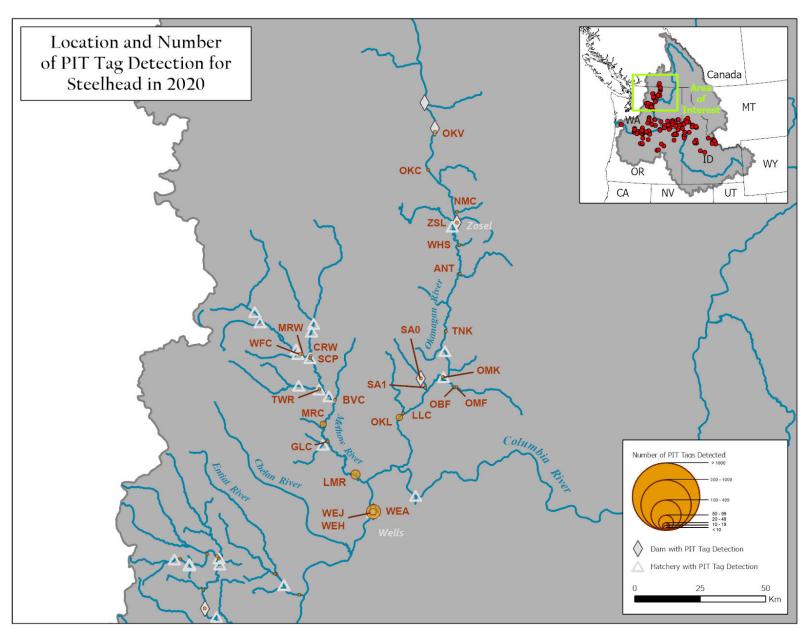


Figure C19. Map of Upper Columbia River (Wells Dam and above) detection sites and number of steelhead detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

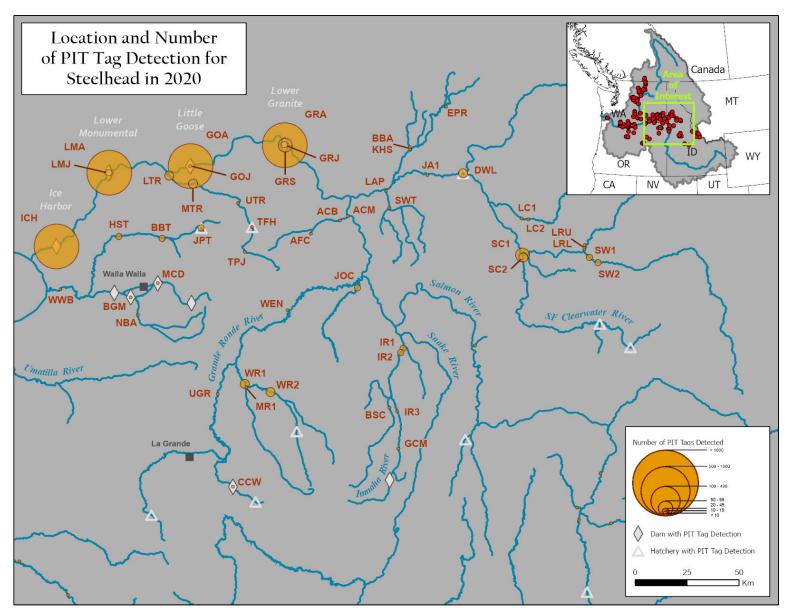


Figure C20. Map of Lower Snake River detection sites (Salmon River not included) and number of steelhead detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

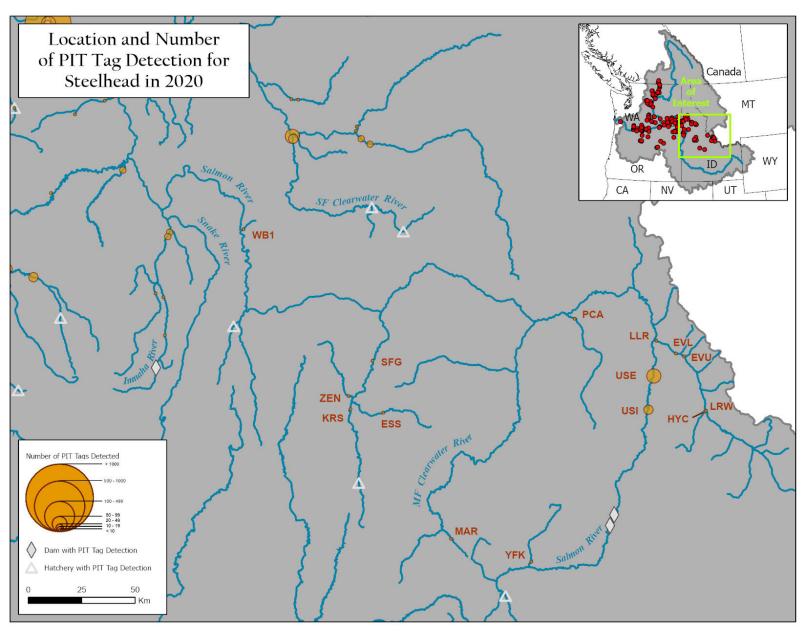


Figure C21. Map of Salmon River detection sites and number of steelhead detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

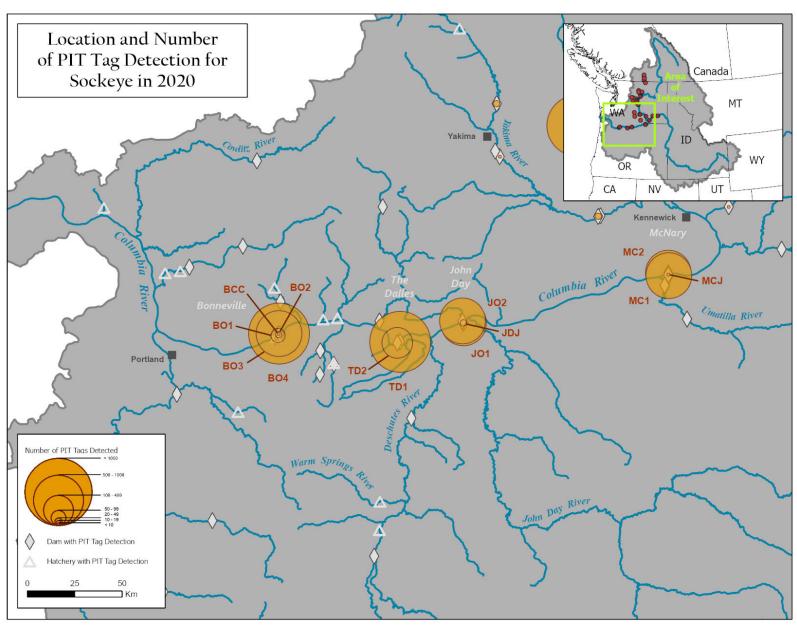


Figure C22. Map of Lower Columbia River detection sites (below Snake River) and number of Sockeye Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

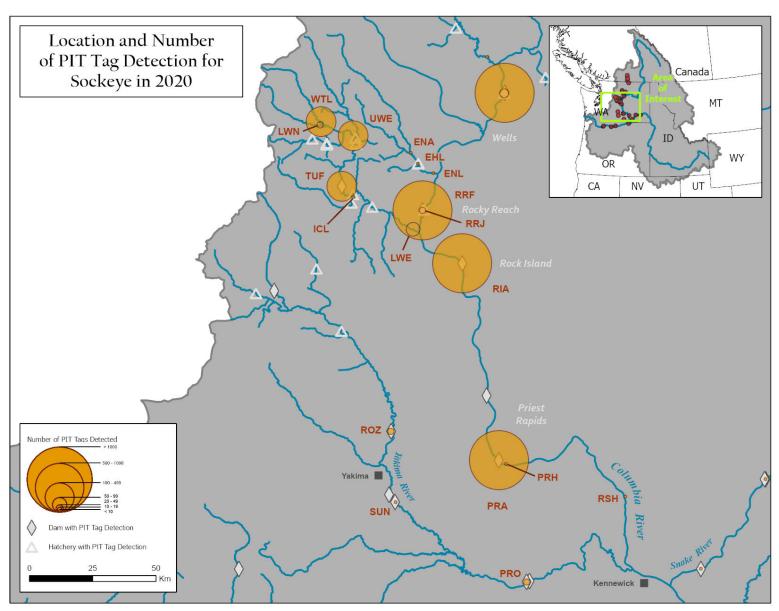


Figure C23. Map of Upper Columbia River (between the Snake River and Wells Dam) detection sites and number of Sockeye Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

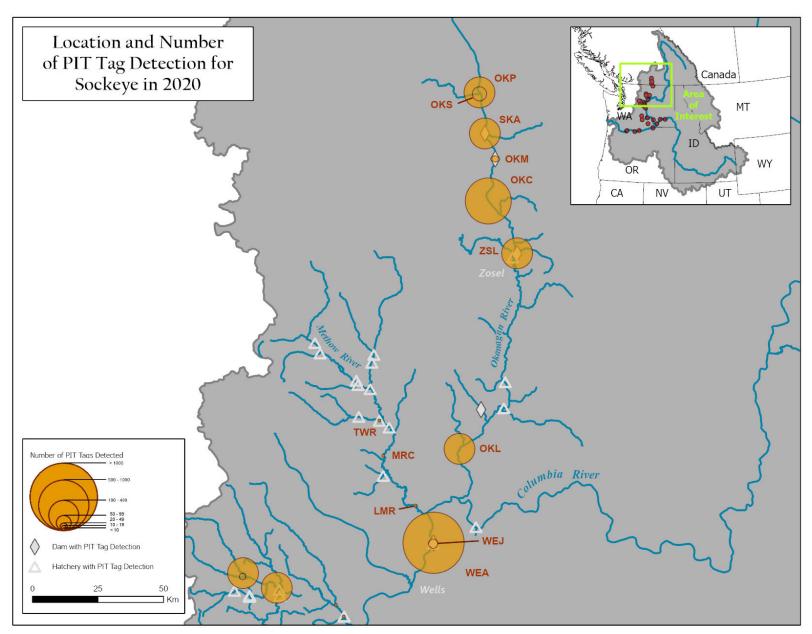


Figure C24. Map of Upper Columbia River (Wells Dam and above) detection sites and number of Sockeye Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

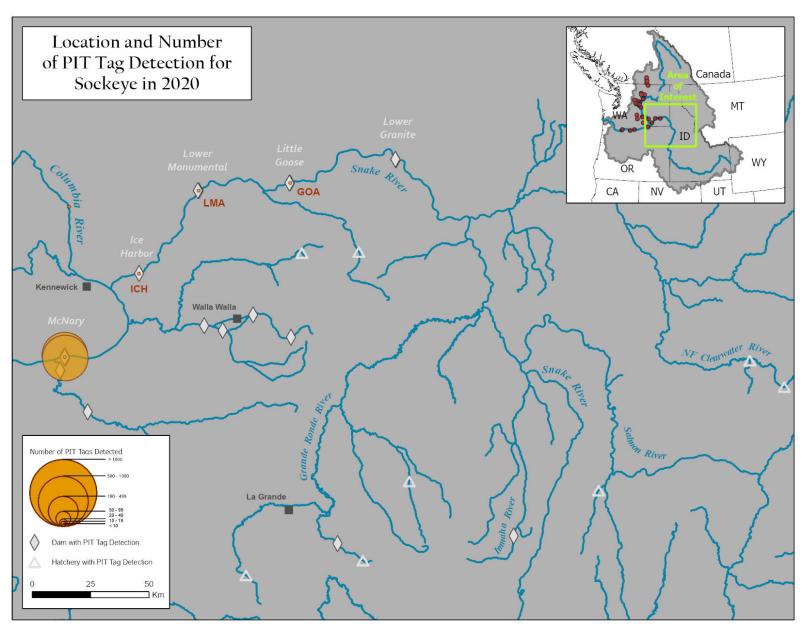


Figure C25. Map of Lower Snake River detection sites (Salmon River not included) and number of Sockeye Salmon detected. Table C1 in Appendix C lists the PTAGIS sites' full name and the three-letter codes on this map.

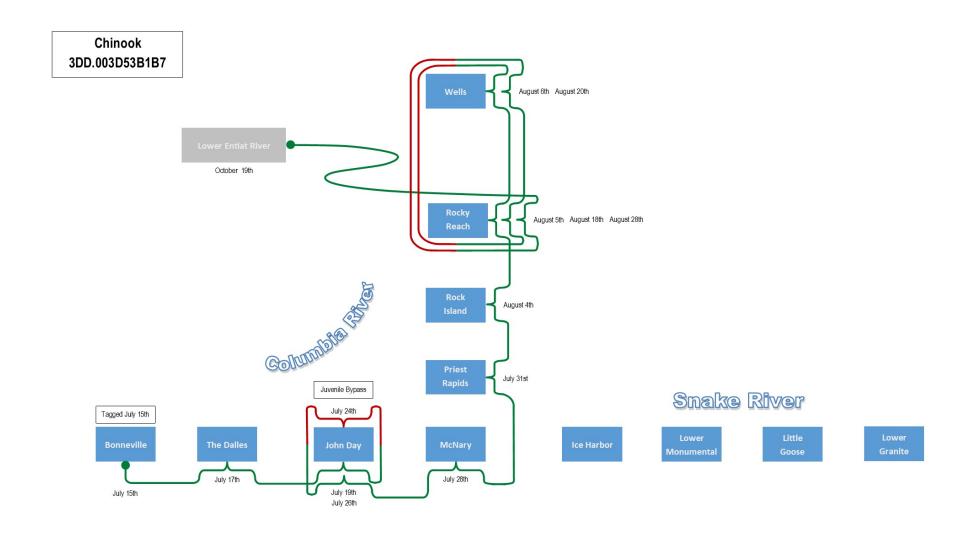


Figure C26. Chart showing the pattern and location of fallback events at mainstem dams on the Columbia and Snake rivers for Chinook Salmon with PIT tag 3DD.003D53B1B7, tagged and tracked in 2020.

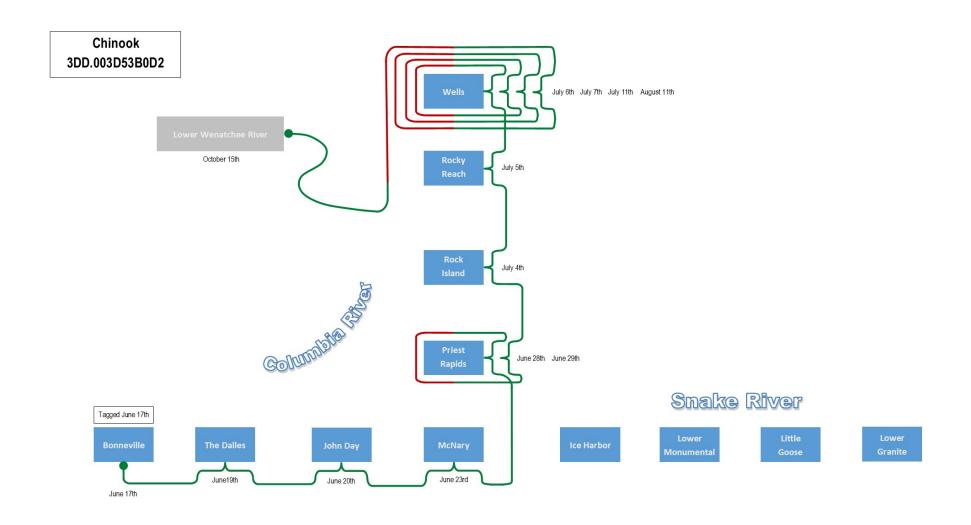


Figure C27. Chart showing the pattern and location of fallback events at mainstem dams on the Columbia and Snake rivers for Chinook Salmon with PIT tag 3DD.003D53B0D2, tagged and tracked in 2020.

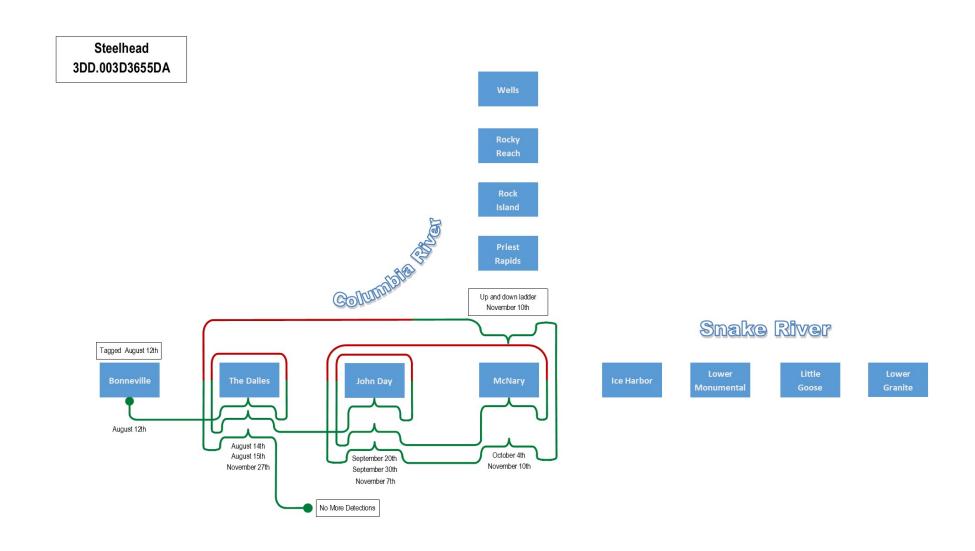


Figure C28. Chart showing the pattern and location of fallback events at mainstem dams on the Columbia and Snake rivers for steelhead with PIT tag 3DD.003D3655DA, tagged and tracked in 2020.

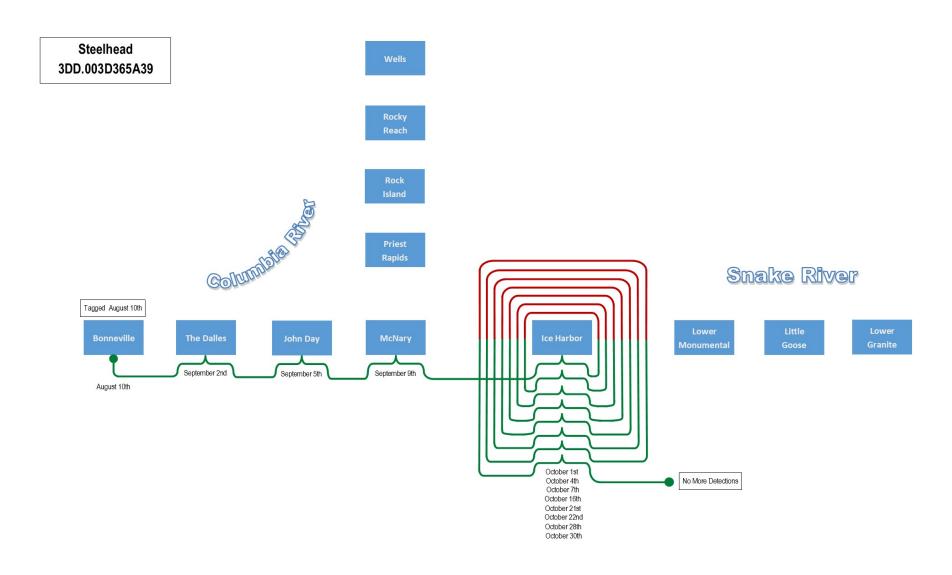


Figure C29. Chart showing the pattern and location of fallback events at mainstem dams on the Columbia and Snake rivers for steelhead with PIT tag 3DD.003D365A39, tagged and tracked in 2020.

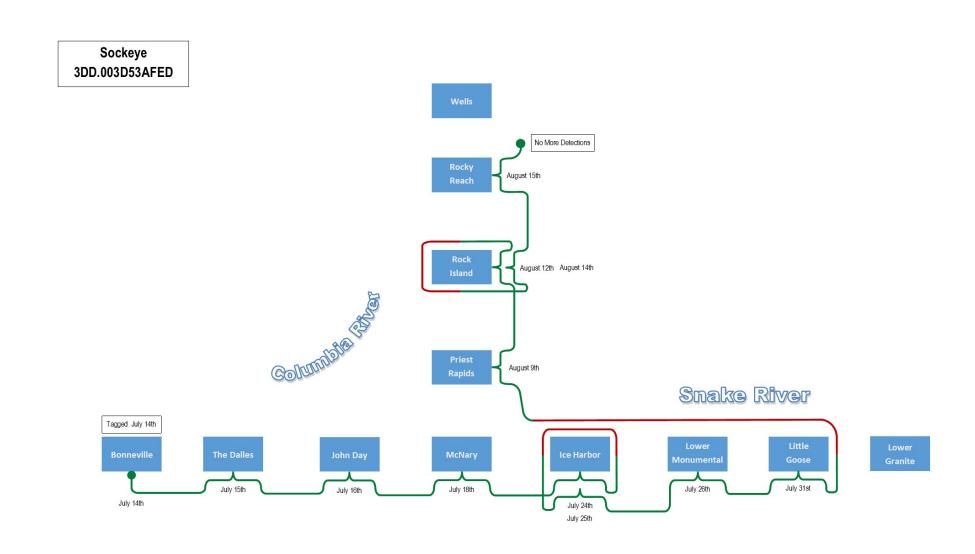


Figure C30. Chart showing the pattern and location of fallback events at mainstem dams on the Columbia and Snake rivers for Sockeye Salmon with PIT tag 3DD.003D53AFED, tagged and tracked in 2020.

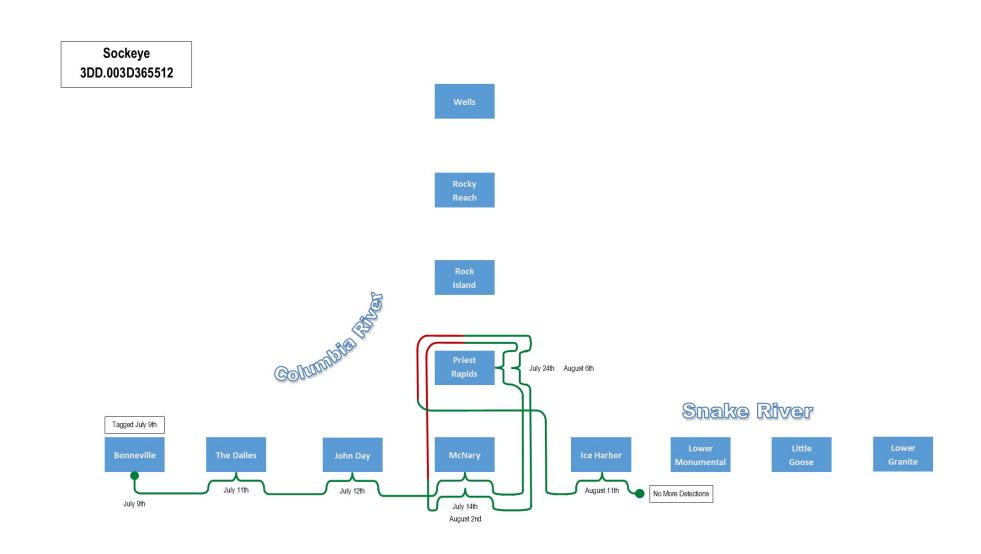


Figure C31. Chart showing the pattern and location of fallback events at mainstem dams on the Columbia and Snake rivers for Sockeye Salmon with PIT tag 3DD.003D365512, tagged and tracked in 2020.

APPENDIX D

Table D1. Table showing picket lead protocols that affected sampling of salmonids in 2020. Pickets are used to direct fish into the trap ladder and the number that can be used is affected by temperature and fish abundance numbers.

Protocols specified at different temperatures and abundances (based on previous day count at Bonneville Dam Washington Shore ladder (DART Adult Passage Ladder Summary for All Species | Columbia Basin Research (washington.edu)) for AFF operature (F) <70 <70 <70 <70 <70 <70 ≥70 ≥70 ≥70 ≥70 ≥70 ≥70 ≥70

Temperature (F)	<70	<70	<70	<70	<70	≥70	≥70	≥70	≥70	≥70
Abundance	0-6000	6000-12000	12000- 25000	25000-35000	.35000	0-3000	3000-6000	6000-9000	9000-18000	>18000
Picket Leads	All 4 lowered 4 hours	4 down 3 hours, 1 up for ½ hour, sample 1 more hour	4 down 2 hours, raise 2 pickets for ½ hour, sampled 2 more hours	Two down for 4 hours	No pickets down	All 4 lowered 4 hours	4 down 3 hours, 1 up for ½ hour, sample additional 1 hour	4 down 2 hours, raise 1 picket for ½ hour, sample 2 more hours	2 leads down 4 hours, all pickets up at 10:30 AM	No pickets down
Week	<70 Protocol (a)	<70 Protocol (b)	<70 Protocol (c)	<70 Protocol (d)	<70 Protocol (e)	>70 Protocol (a)	>70 Protocol (b)	>70 Protocol (c)	>70 Protocol (d)	>70 Protocol (e)
16										

17		No Sampling Permitted by U.S. Army Corps of Engineers											
18													
19													
20					1	1							
21	2	0	0	0	0	0	0	0	0	0			
22	4	0	0	0	0	0	0	0	0	0			
23	0	1	4	0	0	0	0	0	0	0			
24	0	0	1	2	2	0	0	0	0	0			

25	0	0	0	2	3	0	0	0	0	0
26	0	0	5	0	0	0	0	0	0	0
27	0	1	3	0	0	0	0	0	0	0
28	0	2	0	0	0	0	0	0	0	0
29	5	0	0	0	0	0	0	0	0	0
30	5	0	0	0	0	0	0	0	0	0
31	2	0	0	0	0	2	0	0	0	0
32	0	0	0	0	0	4	0	0	0	0
33	0	0	0	0	0	4	0	0	0	0
34	0	0	0	0	0	1	2	1	0	0
35	0	0	0	0	0	0	2	1	1	0
36	0	0	0	0	0	0	0	4	0	0
37	0	0	2	1	0	0	0	0	0	0
38	0	1	3	0	0	0	0	0	0	0
39	2	3	0	0	0	0	0	0	0	0
40	3	2	0	0	0	0	0	0	0	0
41	5	0	0	0	0	0	0	0	0	0
42	4	0	0	0	0	0	0	0	0	0
Total	32	10	18	5	5	11	4	6	1	0

Four picket leads will be allowed during trap operations for up to four hours. After all picketed leads are raised, fish already in the AFF can be sampled for one additional hour. Abundances are the previous day's Washington Shore ladder count (<u>DART Adult Passage Ladder Summary for All Species | Columbia Basin Research (washington.edu)</u>). The picketed lead operations are as follows:

<70F(a) 0-6,000: All 4 picket leads can be lowered for 4 continuous hours.

<70F(b) Protocol b 6,000–12,000: All 4 picket leads down for 3 hours. At the 3rd hour, raise at least 1 picket lead for ½ hour, and then

- continue sampling for additional 1 hour.
- <70F(c) Protocol c 12,000–25,000: All 4 picket leads down for 2 hours. At the 2nd hour, raise at least 2 picket leads for ½ hour, and then continue sampling for an additional 2 hours.</p>
- <70F(d) Protocol d 25,000–35,000: Two picket leads down for four hours.
- <70F(e) Protocol e > 35,000: No picket leads down.
- >70F(a) 0-3,000: All 4 picket leads can be lowered for 4 continuous hours.
- >70F(b) 3,000–6,000: All 4 picket leads down for 3 hours. At the 3rd hour, raise at least 1 picket lead for ½ hour and then continue sampling for an additional 1 hour.
- >70F(c) 6,000–9,000: All 4 picket leads down for 2 hours. At the 2nd hour, raise at least 1 picket lead for ½ hour and then continue sampling for an additional 2 hours.
- >70F(d) 9,000–18,000: 2 leads down for 4 hours. All picket leads raised by 10:30 am.
- >70F(e)> 18,000: No picket leads down.